

106

IRSET-0298
A Method for Detecting Modified Code Clones in a Program

Masakazu Takahashia,*, Yunarso Anangb, and Yoshimichi Watanabec

a Department of Computer Science and Engineering, University of Yamanashi,
Japan

E-mail address: mtakahashi@yamanashi.ac.jp
b Department of Computational Statistics, Institute of Statistics, Indonesia

E-mail address: anang@stis.ac.id
c Department of Computer Science and Engineering, University of Yamanashi,

Japan
E-mail address: nabe@yamanashi.ac.jp

Abstract
In modern programming, new functions are often developed by coping a portion of
an existing program and modifying it. As a result, the resulting program may
ultimately contain many portions that are similar with a few modifications, making
it difficult to maintain the program. Thus, these similar portions, which are
referred to as gapped code clones (GCCs), should be integrated into a single
shared function. However, it is difficult to detect GCCs using exact matching
criteria because they differ slightly from each other. Hence, in this study, we
propose a program line-based GCC detection method using the Smith–Waterman
algorithm, which was designed to detect similar character string based on an
original character string. A GCC detection tool was developed and applied to
various existing programs to validate this approach. Results revealed that the
proposed method can be used to detect GCCs with high accuracy compared with
existing tools and within an acceptable time.

Keywords: Gapped Code Clone, Smith-Waterman Algorithm, Software
Development

1. Introduction
When adding a new function to an existing program, engineers tend to copy a
portion of the existing program and modify it as needed to serve the intended
purpose [1]. As a result, the final program includes many similar program potions,
which are referred to as code clones (CCs). This makes it difficult to maintain the
program. For example, if the original portion of the code contains an error, the
error will be propagated to all of the CCs that are derived from this portion; hence,
it becomes time-consuming to correct the errors in all CCs. Therefore, various
methods have been developed to detect CCs; for example, refactoring CCs
involves redesigning and integrating the CCs into the appropriate program
structure.

CCs are often modified by changing the variable names, modifying the values of
the constants, and adding instructions (lines). Hence, the developed CCs contain
slight differences and do not match perfectly [2]; these are called gapped code

Yunarso Anang
International Research Symposium on Engineering and Technology
IRSET2019, pp. 106-116, 2019; ISBN: 978-986-5654-01-6�

107

clones (GCCs). However, because of their slight differences, GCCs cannot be
accurately detected using exact matching criteria. Thus, in this study, we propose a
method to detect GCCs by using the Smith–Waterman (SW) algorithm, which was
initially designed to detect similar character strings.

2. Related Works
Many CC detection methods have been proposed so far. These approaches can be
categorized as methods based on software metrics, those based on program units,
and those focused on the program structure; these approaches are detailed as
follows.

The first type of CC detection method is based on software metrics, which are
indexes that describe the characteristics of the software. Such metrics include the
number of program lines (LOC), the number of branches in the program (CYC),
and the degree of cohesion for program portions (COB). The metrics-based
method involves calculating the metrics from a program portion (function, method,
or block in the program) and comparing the metrics of each program portion to
find similarities, which may indicate CCs [3].

The next type of CC detection method is based on the program unit. One such
algorithm that was designed to detect GCCs, called LCS (longest common
sequence), operates by detecting the longest common sequences (instructions) in
the functions, methods, and blocks and selecting the common sequences that
exceed a predefined value as CCs [4].

The final type of CC detection method is focused on the program structure: a
program structure tree is developed by analyzing the original program, and CCs
are detected by comparing the program structure trees and identifying similarities
between them [5]. In a modified version of this method, a dependency graph that
shows dependencies between program elements is used to detect CCs in the same
way [6].

Because the metrics-based method and the LCC algorithm detect CCs based on
units of the function, subroutine, block, and method, a CC that comprises only a
portion of those units will not be detected. Furthermore, the structure-based
methods are accompanied by technical difficulties as they require developing
program structure trees or dependency graphs from the existing program.

3. Proposed GCC Detection Method
This section describes the GCC detection method that uses the SW algorithm:
Section 3.1 presents an outline of the SW algorithm, and Section 3.2 presents the
corresponding GCC detection method based on this algorithm.

3.1 Smith-Waterman Algorithm
The SW algorithm can detect multiple similar character strings based on an
original string [7] . Notably, this algorithm can detect similar strings that contain
mismatched and/or additional characters. Three parameters are input to the SW

108

algorithm: match (the weight when the corresponding characters in the compared
strings match), mismatch (the weight when the characters do not match), and gap
(the weight when a character is added to a string that matches the original string
until immediately before the addition). These parameters represent the degrees of
tolerance for mismatched and added characters and are specified arbitrarily by the
user. Figures 1 – 4 show an example of the calculation of the matching score when
the match, mismatch, and gap parameters are set to 1, −2, and −1, respectively.
The method for detecting similar character strings is as follows: where m and n are
equal to the lengths of the original and compared character strings, respectively:
(1) Create the table
A two-dimensional table of size (m + 2) by (n + 2) is prepared.
(2) Initialize the table
The characters in the original string (length m) are placed in the cells of the first
row (from cell (1, 3) to cell (1, m+2)), and the characters in the compared string
(length n) are placed in the cells in the first column (from cell (3, 1) to cell (n+2,
1)). Zeros are placed in the cells in the second row (from cell (2, 3) to cell (2,
m+2)) and second column (from cell (3, 2) to cell (n + 2, 2)) (see Fig. 1).

Fig. 1: Initializing the table

(3) Calculate the value in each cell
The value, vi,j, of each cell (i, j) is calculated as shown in Eqs. 1 and 2 (see Fig.
2):In this sample, the following equations are presented as illustration.

°
¯

°
®

�

�

�

 dd

�

�

��

.
,

),,(
)2,2(

1,

,1

2,1

,

gapv

gapv

basv

jiv

ji

ji

jiji

ji 　 (1)

°̄
°
®

z

).(
),(

),(
ji

ji

bamismatch

bamatch
bjais (2)

109

When the calculated value in a cell is not zero, a pointer is set from the value that
was used to calculate this value toward the calculated value in order to trace the
path toward the output (see Fig. 3). The calculated value is then placed in the cell.
(4) Conduct back-tracing
After calculating all values in the cells, the similar character string is extracted by
back-tracing the pointer from the cell that has the maximum value in the table to
the cell which has a value of zero (see Fig. 4)
(5) Output the similar character string
The characters that correspond to the cells that back-traced are combined as a
string, which is output as the similar character string.

Fig. 2 : Calculating the value in each cell

Fig. 3: Setting the pointer

110

Fig. 4: Back-tracing

3.2 GCC Detection Method Using the SW Algorithm
This section describes the GCC detection method using the SW algorithm that was
explained in Section 3.1. Here the objective is to detect GCCs in a program written
in Java, which is a representative object-oriented programming language.

First, the characteristics of the GCCs in the program are considered. The GCCs
occurred by copying and pasting portions of the original program into the existing
program and adding slight modifications, such as changing the names of the
variables, adjusting the values of the constants, and adding some instructions.
These GCCs are found in the units of blocks (program portions, such as classes,
methods, functions, and the subroutines), lines, and tokens (words are punctuated
by spaces, brackets, and semicolons). When detecting GCCs, the detection
methods based on block units is not adequate because this judgment criterion for
similarity is too large so the granularity is insufficient. Similarly, the detection
method based on the character unit is not adequate because the granularity for the
judgment criteria is too small. Further, the detection method based on the token
unit is not adequate because the unit of the GCC does not necessarily match the
unit of the original code such as when the detected GCC is partitioned in the
middle of the line [8]. Consequently, the proposed detection method is based on
the line unit.

The concrete GCC detection method based on the SW algorithm with lines as the
units is as follows:

(a) Provide the inputs to the program: target program, minimum length of a GCC

(number of lines), maximum gap rate, and parameters for the SW
algorithm(match, mismatch, and gap) (Fig. 5(a)).

111

(b) Identify the target lines (Fig. 5(b)).
(c) Replace the names of the variables, subroutines, classes, and methods and the

values of the constants with special characters (Fig. 5(c)).
(d) Identify the sentences (Fig.5(d)).
(e) Calculate the hash value in a line unit (Fig. 5(e)).
(f) Regard one hash value as one character and the combination of multiple

characters as a character string (Fig. 5(f)).
(g) Detect similar portions (corresponding to GCCs) from the resulting character

string using the SW algorithm (Fig. 5(g)).
(h) Output the start and end line numbers that delineate the GCCs and the gaps

(Fig. 5(h)).
(i) Repeat steps (b) through (f) on the entire target program.

The GCC that has the maximum length in the program can be detected as
described above. However, there is a possibility that the program includes multiple
GCCs. To detect all GCCs, operation (g) is modified by detecting the cells that
satisfy the following conditions from the lower right to the upper left of the table:

 .0),(!jiv (3)
).0,(),0(ivjv (4)

112

Fig. 5 GCC detection procedure with lines as the units.

Here,),(jiv explains the value of cell(i, j). Equation (3) represents the condition
that a particular token is the last token in the sentence, and Eq. (4) represents the
condition that the last tokens in each sentence coincide. The cells that satisfy those
conditions are searched from the lower right cell to the upper left cell, and the

(a) Input the Program (b) Identify the lines

(d) Identify sentences (c) Replace identifiers into
specific characters

(e) Calculate the hash values (f) Create strings

(h) Output detection result (g) Detect similar character strings

113

back-tracings are conducted from those cells. As a result, all GCCs that satisfy the
conditions are detected. Then, back-tracing is conducted from those cells as well.

Furthermore, several countermeasures are included to increase the accuracy of the
GCC detection: To avoid detecting GCCs that have already been detected in other
GCCs, the cells that have already been back-traced cannot be regarded as starting
cells (points). In addition, GCCs that are shorter than a predefined minimum
number of lines and those that exhibit rates of mismatches and gaps above the
predefined maxima are excluded from the GCC candidates.

4. Proposed GCC Detection Method
To evaluate the proposed method, a GCC detection tool was developed using C++
language. The tool was installed on a PC equipped with Intel Xeon E3-1230v2
processor (3.3 GHz) and 8 GB main memories. This tool was applied to several
programs (Table 1) [9, 10], and the accuracy and evaluation time of GCC detection
were evaluated for each program.
 When detecting GCCs using the SW algorithm, it is known that the detection
accuracy depends on the given parameters (match, mismatch, gap, minimum GCC
lines, and maximum gap rate). Thus, preliminary experiments were conducted by
changing these parameters to obtain adequate values for these parameters (Table
2); the optimized values are as follows:

 match: 2
 mismatch: −3
 gap: −2
 minimum statements: 20
 maximum gap rate: 0.15

The detection accuracy of the developed GCC detection tool was evaluated in
terms of the following indexes:

r e fS
S

c a l l Re (5)

c a n dS
S

e c i s i o n Pr (6)

 � �
� �e c i s i o nc a l l

e c i s i o nc a l lF m e a s u r e
PrRe

PrRe2
�
uu

 (7)

Table 1: Target programs for evaluating the GCC detection

Name Language Total LOC
Eclipse-ant Java 70008
Netbeans-javadoc Java 14360

Table 2: Results of the sensitivity analysis for the parameters

mismatch gap gap num Correct Recall Precision F-

114

rate of
GCC

GCC measure

-3 0 0.1 94 4 0.13 0.04 0.06
-3 1 0.15 57 8 0.27 0.14 0.18
-3 1 0.20 100 13 0.43 0.13 0.20
-3 1 0.25 175 16 0.53 0.09 0.16
-3 2 015 39 8 0.27 0.21 0.23
-3 2 0.20 60 11 0.37 0.22 0.27
-3 2 0.25 109 12 0.40 0.11 0.17
-4 1 0.15 61 8 0.27 0.13 0.18
-4 1 0.20 103 14 0.47 0.14 0.21
-4 1 0.25 160 16 0.53 0.10 0.17

Table 3: Evaluation of results
Program Detection

Tool
Recall Precision F-measure Detection

Time[s]
eclipse
-ant

Proposed 0.37 0.22 0.27 22

 NiCad 0.15 0.19 0.16 4
netbeans
-javadoc

Proposed 0.42 0.18 0.26 7

 NiCad 0.17 0.11 0.13 3

where Sref represents the set of GCCs that are known to be correct GCCs, Scand
represents the set of GCCs that were detected by the tool, and S represents the set
of GCCs that are included in the Sref and Scand. Recall represents the ratio of GCC
detection among the correct GCCs; a high recall value indicates that few GCCs
were missed. Precision represents the ratio of GCCs that were correct among all
GCCs that were detected; a high precision value indicates that few of the GCCs
were not actually GCCs. As it is known that there is a trade-off relationship
between recall and precision, the harmonic mean (Fmeasure) between these two
metrics was also calculated.

Table 3 shows the recall, precision, and Fmeasure results from the GCC detection
using the proposed method compared with those using NiCad, which is a
representative GCC detection tool [11, 12]. These results show that the recall,
precision, and Fmeasure attained using the proposed method were superior to
those obtained using NiCad. Hence, it was concluded that the proposed method
and tool can be used to adequately detect GCCs.

However, the detection time using the proposed method and tool was 2.3–5.4
times that when using NiCad. This difference was attributed to the additional
countermeasures that were implemented to improve the GCC detection accuracy,
which requires additional calculations; because the proposed method conducts
multiple searches of the whole table, the order of the computational complexity
becomes several times that of the NiCad algorithm. However, in practical software

115

development, the operation of GCC detection is not conducted frequently, so the
calculation time of 20 s for a 7000 LOC program should be acceptable.

5. Conclusion and Future Work
Here, we proposed a novel GCC detection method using the SW algorithm.
Evaluation experiments were conducted to determine the detection accuracy, and it
is found that the proposed method and tool provide higher detection accuracy
compared with an existing detection method and tool. Additionally, it is found that
GCCs could be detected within a practical time using the proposed approach.

Here, the parameters that are necessary for GCC detection (such as match,
mismatch, gap, minimum sentences, and maximum gap rate) were determined
experimentally. However, the optimal values may differ depending on the program
structure. Therefore, in future studies, a method to determine adequate parameters
by evaluating different possibilities (i.e., parameter sensitivity analysis) should be
developed.

In addition, it should be noted that copying and pasting portions of a program is
generally conducted at the scale of several tens of LOC. Therefore, it is considered
that GCC detection on the line unit is closer to what practically occurs than the
GCC detection using sentences and/or tokens as the units. Hence, to further refine
the proposed method, additional investigations should be conducted to determine
the best detection unit by comparing the results of GCC detection using sentences
and lines as the units.

Finally, it should be considered that engineers generally conduct GCC refactoring
to improve the maintainability of the program, but not all detected GCCs can be
refactored. Therefore, it would be desirable to develop a method to select GCCs
that are suitable for refactoring from all detected GCCs [13].

Acknowledgments
This research was supported by the Scientific Research Grant of the SUZUKI
foundation “A Safety Analysis Method Cooperating FMEA, FTA, and HAZOP for
Embedded Control Software” and Grant-in-Aid for Scientific Research (C) of the
Japan Society for the Promotion of Science "Integrated Analysis Method for
hazard cased by software interaction cooperating with multiple safety analysis
methods."

6. References
[1] Higo Y., Kusumoto S., and Inoue E. (2008) A Survey of Code Clone Detection

and Its Related Techniques, IEICE Transactions on Information and
Systems, Vol. 91-D, No. 6, 1465-1481.

[2] Kim M., Bergman L., Lau T., and Notkin D. (2004) An Ethnographic Study of
Copy and Paste Programming Practices in OOPL, Proc. 2004 International
Symposium on Empirical Software Engineering, 83-92.

116

[3] Mayland J., Leblanc C., and Merlo E. (2013) Experiment on the Automatic
Detection of Function Clones in a Software System Using Metrics, in Proc. of
the 12th International Conference on Software Maintenance, 244-253.

[4] Roy C., and Cordy J. (2008) NiCad: Accurate Detection of Near-miss
Intentional Clones Using Flexible Pretty-printing and Code Normalization,
Proc. 16th International Conference on Program Comprehension, 172-181.

[5] Jiang L., Misherghi G,, Su Z., and Glondu S. (2007) DECKARD: Scalable and
Accurate Tree-Based Detection of Code Clones, in Proc. of the 29th
International Conference on Software Engineering, 96-105.

[6] Krinke J. (2001) Identifying Similar Code with Program Dependence Graphs,
in Proc. of the 8th Working Conference on Reverse Engineering, 301-309.

[7]Smith-Waterman, bioinformatics (online), < http://bi.biopapyrus.net/seq/smith-
waterman. html> (2017-2-20 Accessed).

[8] Murakami H., Hotta K., Higo Y., and Igaki H., Kusumoto S. (2013) Gapped
Code Clone Detection Using The Smith-Waterman Algorithm, Proc. of
Software Engineering Symposium 2013, 1-8.

[9] The Apache Software Foundation, Welcome, Apache Ant (online),
<http://ant.apache.org /> , (2017-2-20 Accessed).

[10] Oracle: Javadoc support, NetBeans (online), <https://edu.netbeans.org
/quicktour/ java doc.html> (2017-2-20 Accessed).

[11] Bellon S., Koschke R., Antniol G., Krinke J., and Merlo E. (2007)
Comparison and Evaluation of Clone Detection tools, IEEE Trans. on
Software Engineering, Vol. 31, No. 10, 804-818.

[12] Bellon S. Detection of Software Clones (online),
<http://www2.informatik.uni- stuttgart.de/iste/ps/clones/index.html>
(2017-2-20 Accessed).

[13] Choi E., Yoshida N., Ishio T., Inoue K. and Sano T. (2011) Extracting Code
Clones for Refactoring Using Combinations of Clone Metrics, in Proc. of
IWSC’11, 7-13.

