7))
g) Extending Runjags: A tutorial on adding
— Fisher’'s z distribution to Runjags
m Cite as: AIP Conference Proceedings 2329, 060005 (2021); https://doi.org/10.1063/5.0042143
m Published Online: 26 February 2021
o Arifatus Solikhah, Heri Kuswanto, Nur Iriawan, Kartika Fithriasari, and Achmad Syahrul Choir
(@
'1 \‘ f
5 & &
Q
O
-
(O]
0
I
5
%
Challenge us. |
What are your needs for N~ # Zurich
periodic signal detection? [ 7\ Instruments
JAY | o
Publishing
AIP Conference Proceedings 2329, 060005 (2021); https://doi.org/10.1063/5.0042143 2329, 060005

© 2021 Author(s).



https://images.scitation.org/redirect.spark?MID=176720&plid=1401533&setID=379066&channelID=0&CID=496955&banID=520310232&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=f64bef4ce8450099ddefdcc26d23a5121cb5eda2&location=
https://doi.org/10.1063/5.0042143
https://doi.org/10.1063/5.0042143
https://aip.scitation.org/author/Solikhah%2C+Arifatus
https://aip.scitation.org/author/Kuswanto%2C+Heri
https://aip.scitation.org/author/Iriawan%2C+Nur
https://aip.scitation.org/author/Fithriasari%2C+Kartika
https://aip.scitation.org/author/Choir%2C+Achmad+Syahrul
https://doi.org/10.1063/5.0042143
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0042143

Extending Runjags: A Tutorial on Adding Fisher’s z
Distribution to Runjags

Arifatus Solikhah" %, Heri Kuswanto'*”, Nur Iriawan', Kartika Fithriasari', and
Achmad Syahrul Choir®

'Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Indonesia.
’BPS - Statistics Indonesia, Indonesia.

¥ Corresponding author: heri_k@statistika.its.ac.id

Abstract. JAGS is an open-source package to analyze graphical model that is written with extensibility in mind. The
runjags package includes many enhancements to JAGS, including a custom JAGS module that contains some additional
distributions in the Pareto family. A very flexible set of statistical models based on the logarithm of an F variate, the
standardized Fisher's z distribution, was introduced more than 90 years ago. However, the standardized Fisher's z
distribution is not yet adaptive for modeling, since the mode cannot be shifted from the zero point. This paper introduces
the Fisher’s z distribution, i.e., the standardized Fisher's z distribution which added a location parameter u and a scale
parameter 0. The mode of the distribution lies in p. In this paper, we provide step-by-step instructions on how to add
Fisher’s z distribution to the runjags package. In order to affirm the accuracy of our implementation, we ran a
comprehensive numerical experiment, using linear regression model. We conduct a simulation study to investigate the
model performance compared to the normal or Gaussian error regression (GER) model. The results show that the Fisher’s
z error regression (ZER) model outperforms the GER model.

INTRODUCTION

JAGS (Just Another Gibbs Sampler) is a Bayesian graphics modeling program that aims for compatibility with
classic BUGS (Bayesian inference Using Gibbs Sampling)[1]. The BUGS is a software package for performing
Bayesian inference in which the user only needs to specify the structure of the model. In addition, BUGS uses
Markov Chain Monte Carlo (MCMC) methods based on Gibbs sampling, to generate samples from the posterior
distribution of the specified model [2]. JAGS is fully open source and written in C++ language [3]. Wabersich and
Vandekerckhove [4] provided a very useful tutorial on writing and installing a standalone JAGS module, but it is
easier to implement a shared JAGS library in an R package [3]. The configured script provided in the runjags
package can be used as a template to create additional extension modules within R packages [3].

The functions in the runjags are designed to be user-friendly. The runjags package provide a number of features
to make the recommended convergence and sample size checks more obvious to the end user. The runjags package
also provides additional distributions including the Pareto types I, II, III and IV and other distributions such as the
generalized Pareto, half-Cauchy, DuMouchel, and Lomax distributions [3]. However, the package did not explain
how to add a new distribution to the package. This paper aims to discuss how to add the Fisher’s z distribution to the
runjags package, by modifying the package. This distribution will be used as an error term in the regression model.

Regression analysis is an important statistical tool that is commonly applied in most sciences. Among the many
possible regression techniques, the least squares (LS) method has been generally adopted due to tradition and ease of
computation. However, there is a widespread awareness of the dangers posed by the occurrence of outliers, which
can be the result of typing errors, recording or transmission errors, misplaced decimals, exceptional phenomena such
as earthquakes or strikes, or members of a different population slipping into the sample. Not only the response
variable can be outlying, but also the explanatory part. Both types of outliers can completely ruin an ordinary LS
analysis. To remedy outliers in regression analysis, the robust methods and the outlier diagnostics have been

International Conference on Mathematics, Computational Sciences and Statistics 2020
AIP Conf. Proc. 2329, 060005-1-060005-14; https://doi.org/10.1063/5.0042143
Published by AIP Publishing. 978-0-7354-4073-9/$30.00

060005-1



developed [5]. In the context of robust methods, the interesting aspect of flexibility is represented by the possibility
of adjusting the tail weight of the error term to contain outliers [6]. When the error term reaches the real number
line, an interesting distribution is the Fisher's z distribution.

The standardized Fisher's z distribution was introduced by Fisher [7] as half of the logarithm of the F-distribution
with two shape parameters d; and d,. This distribution is always unimodal, has a zero-point mode, and has a
symmetrical shape when the values of the two parameters are the same and has an asymmetrical shape if it is not the
same. The standardized Fisher's z distribution is a family of the Chi-squared, Student 7, and Normal distributions
[7,8]. However, the distribution is not yet adaptive for modeling because the mode cannot be shifted from zero.
Continuing the research of Fisher [7] and the previous researchers, this paper introduces the Fisher’s z distribution,
i.e., the standardized Fisher's z distribution which added a location parameter p and a scale parameter o.
Furthermore, we provide step-by-step instructions on how to add the Fisher’s z distribution to the runjags package.

THE F AND FISHER’S Z DISTRIBUTIONS

In this section, we discuss the probability density function, the cumulative distribution function, and the quantile
function of the F and Fisher's z distributions.

The F Distribution

Let Y be a random variable distributed as an £ distribution with d; and d, degrees of freedom. The probability
density function (p.d.f.) of the Y be defined as [9]

(d,/d, )dl/z Y/
B(%dl,%dz) (1+yd1/d2)(d,+dz)/2 >

and the cumulative distribution function (CDF) of the Y be defined as follows [9]

1y (»:d,.d,) = y>0;d, > 0:d, >0, (1)

. _ 1 " (d/2)-1 (1 _ (/21 5 *_ dy
Fy(y;d,,d,) —B(%dl,%dz)lt (1-0)*""ar; v )
where B(.) be the beta function. The value y, is called the p-quantile of the population, if P(Y < yp) = p with
0 < p < 1[10]. The quantile function (QF) of the Y be expressed as
A", (3d).3d,)
Yy, = - ; 3)
dl (I_I lyl, (%dl’%dz ))

where [ _13’p (.) is the inversion of the incomplete beta function ratio.

The Fisher’s z Distribution

Let Z be a random variable distributed as half of logarithm of an F distribution with two shape parameters d;
and d,, ie.,Y = e?? is distibuted as F with the stated degrees of freedom. The density of Z is [7,8]

ld ld

2% g 2% hz
2'dll d12 : (d,+dy)/2 ; —o<z< Oo7d1 > 0’d2 > 0 (4)
B(5d1’5d2)(dlezz+d2) 11dy

Equation (4) is defined as a p.d.f of standardized Fisher’s z distribution. Interchanging d; and d, is equivalent to
replacing z with —z, so the p.d.f in equation (4) can also be defined as:

S (Z;dl’dZ):

Ly L,
2d2d2 oo
B(%dn%dz) (dze—zz +d, )(d1+d2)/2'

This distribution approached the standardized normal distribution as d; = o and d, — oo. If d; is infinete, this
distribution tends to the Chi square distribution with d, degrees of freedom. Similarly if d, is infinete, it tends to the

Sz (Z;dl’dz): (5)

060005-2



Chi square distribution, with d; degrees of freedom. The standardized Fisher’s z distribution approached a square of
the standardized Student ¢ distribution with d; degrees of freedom, if d, = 1 [7,8].

If Z is random variables distributed as a standardized Fisher’s z, i is a location parameter, and ¢ is a scale
parameter, then the p.d.fof X = 0Z + p is

b )
fX (x;dl’dz’/u’o-):_B(I%dl,z%dz) 72("7#] (d,+d,)/2 ;
(dze ‘ +d1J

If the numerator and denominator of equation (6) are divided by d,

2 (d,/d)" -

o 1 1 S(xa),, (dy+dy)2 *
— — - +In(d, /dy)
B(2d1’2d2][1+e ("j ]

Equation (7) is defined as a p.d.f of Fisher’s z distribution, which is denoted by z(d,, d,, 4, ). The mode of the
distribution lies in u. The CDF of the Fisher’s z distribution is expressed as

1 = 1421 14,-1 d eiz(%j

—Ir” (1—o) " an x= (8)
B(d,.5d,)

—0<x<©;0>0;—0<u<wod >0,d,>0. (6)

(@1+42)/2 then we get

(7

f)( (-x;dlad27;uao-) =

FX(x;dladza/usa):

The QF of the Fisher’s z distribution is

(€))

X =,U+£1n dinlXﬂ(ldl’zd) .
’ 2 a1-1, (bd,4d,)]

where (d (4 /d [ I'1 L %dz)J) is the QF of the F-distribution, as in equation (3).

STEPS TO ADDING THE DISTRIBUTION TO THE RUNJAGS

In this section, we describe the steps required to add a custom distribution in JAGS, by modifying the source
code of the runjags package. We modify the source code with Rstudio [11], which are written in C++ programming
language. The source code of the runjags package can be downloaded for free at https:/cran.r-
project.org/src/contrib/runjags 2.0.4-6.tar.gz. We start by installing the statistical software R [12], RStudio, Rtools,
and JAGS before modifying the runjags. In the rest of this paragraph, it is assumed that R statistical software,
RStudio, Rtools, and JAGS are installed in their default directories. Steps to modify the runjags package as follows:
Step 1 : Open a new project in RStudio.
Go to the File menu and click on New Project. Then select Existing Directory, browse to
the runjags directory, click on Open and click on Create Project to modify the runjags package.

Step 2 : Create the Makevars.win file in the C: /Users/user/Documents/.R folder, with the code as
shown in Fig. 1 (a).

1 dotrR <- file.path(sys.getenv("HOME"), ".R") .
2 if (!file.exists(dotR)) dir.create(dotR) = Makevars.win E3
3 M <- file.path(dotr, "Makevars.win™) 1 JAGS__ROOT-C:\Prog:c-l\JAGS\JAGS—‘].3.(1
4 if (!file.exists(m)) file.create(M)
(a) (b)

FIGURE 1. The Makevars.win File, (a) Creating The File (b) Modifying The File

Step3 : Open the Makevars.win file in the folder C: /Users/user/Documents/ . R and write the code on
it, as shown in Fig.1 (b) (JAGS_ROOT = ‘the location of JAGS program, that has been installed in our
computer’).

060005-3



Step 4

2 (a). The modification steps to modify the runjags.cc file are as follows:

a. Write the distribution headers with the code #include

shown

b. Add the Fisher’s z distribution in the constructor function runjagsModule: : runjagsModule ()
: Module ("runjags") with the code Rinsert (new DFisherz); asshown in Fig. 3 (b) line

in Fig. 3 (a) line 23.

"distributions/DFisherz.h" as

53.

D: © runjags - src D: © runjags -~ src¢ - distributions
A Name A Name

t. h DFisherzh
distributions %] DFisherz.cc

Cl initc | DParl.o

h] jagsversions.h DPar2.0

%] Makevars.in DPar3.o

] Makevars.win | DPard.o

| runjags.cc | DLomax.o

] testrunjags.cc | DMouchel.o

(a) (b)

FIGURE 2. The Folder Structure, (a) /runjags/src (b) /runjags/src/distribution

. Modifying the runjags.cc module, which is located in the /runjags/src folder, as shown in Fig.

[F= 30 T I VT TV N

¥ | runjags.cc

Q -

Source on Save

J/ checks the JAGs version and

#include "jagsversions.h"

#ifndef INCLUDERSCALARDIST
// For JAGS version >=4

#include <module/Module. h>

#include <function/DFunction. h>
#include <function/PFunction.h>
#include <function/QFunction. h>

//#include "functions/myfun.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include

"distributions/omouche
"distributions/DParl.h
"distributions/pPar2.h
"distributions/pPar3.h
"distributions/DPar4.h
“distributions/DGenPar

"distributions/DFisher

"distributions/oLomax.h"

"distributions/pHalfcauchy. h”

5eTs necy

1.h"

il |

z.h"

| runjags.cc

SourceonSave | O /-
37
38 runjagsModule::runjagsvModule() : Mod
39~ {
40 // insert is the standard way to a
41 '/ insert(new myfun);
42 // insert(new mydist);
43
44 // Rinsert (copied from jags) adds
45 Rinsert(new DParl);
46 Rinsert(new DPar2);
47 Rinsert(new DPar3);
48 Rinsert(new DPard);
49 Rinsert(new DLomax);
50 Rinsert(new DMouchel);
51 Rinsert(new DGenPar);
52 Rinsert(new DHalfcauchy);
53 Rinsert(new DFisherz);
54

(a)

(b)

FIGURE 3. The runjags.cc File, (a) Lines 1 to 24 (b) Lines 37 to 54

060005-4




[
WS wEwWwNE

11~
12~
13
14
15
16
17
18
19
20
21

23
24
25
26
27
28
29
30

h| DFisherz.h

: Q -
#ifndef DFisherz_H_
#define DFisherz_H_
// Checks the JAGS version and sets necessary macros:
#include "../jagsversions.h"
#ifndef INCLUDERSCALARDIST
#include <«<distribution/RScalarDist.h>
namespace jags {
#else
#include "jags/Rscalarpist.h”
#endif /* INCLUDERSCALARDIST */
namespace runjags {
class DFisherz : public Rscalarpist {
public:
oFisherz(); // Constructor

double d(double x, PDFType type,
std::vector<double const “> const &parameters,
bool give_log) const;

double p(double q, std::vector<double const “> const &parameters, bool lower,
bool give_log) const;

double q(double p, std::vector<double const “> const &parameters, bool lower,
bool log_p) const;

double r(std::vector<double const “> const &parameters, RNG “rng) const;

bool checkparametervalue(std: :vector<double const “> const &parameters) const;

1

} // namespace runjags
#ifndef INCLUDERSCALARDIST

} / namespace jags
#endif /®* INCLUDERSCALARDIST
#endif * pFisherz_H_

FIGURE 4. The Code of DFisherz.h Scalar Distribution Class Header File

| DFisherz.cc

Ve~ wnEawNn e

21~
22
23
24
25
26
27
28
29~
30
31
32

g Source on Save Q -
#include "DFisherz.h”

#include <util/nainf.h>
#include <rng/RNG. h>
#include <cmath>
#include <cfloat>
#include <Jrmath. h>
using std::vector;
using std::exp;

using std::log;

#define pl(par) (*par[0])
#define p2(par) (*par[1])
#define Mu(par) (*par[2])
#define sIaMA(par) (“par[3])
#ifndef INCLUDERSCALARDIST
namespace jags {

#endif /* INCLUDERSCALARDIST *
namespace runjags {

DFisherz: :DFisherz()
: Rscalarpist(“dz",4, DIST_UNBOUNDED)

{}

bool DFisherz::checkParametervalue (vector<double const “> const &par) const
{

}

return (SIGMA(par) > 0 &% pDl(par) > 0 &% D2(par) > 0 );

FIGURE 5. The Code of DFisherz.cc File, Lines 1 to 32

060005-5




Step 5

: Create the Fisher’s z functions file.

The functions file consists of two files, namely the DFisherz.h and the DFisherz.cc. These two

files are placed in the /runjags/src/distribution folder, as shown in Fig. 2 (b).

a. The DFisherz.h scalar distribution class header file
Figure 4 shows the prototypes of the constructor function and the four functions required, namely the
d, p, q, and r functions.

b. The DFisherz.cc file
The code in the DFisherz.cc file is shown in Fig. 5 through 7. We need to include the
util/nainf.h and rng/RNG.h functions from the JAGS library, to provide the RNG struct and
the JAGS * constants, as well as the Jags * functions. We also need to include the cmath for
standard math operations and need to include the cf1loat for the characteristics of floating types for
the specific system and compiler implementation used. Furthermore, the JRmath.h is needed to
provide many basic functions that can be useful for writing extensions.

We now need to implement the four functions and the prototyped constructor function in the

DFisherz.h. The implementations of the required functions are provided, in Fig. 5, 6, and 7.

1) The p.d.f of a Fisher’s z distributed random variable X is in equation (7), and the log code of the
p.d.fis written as shown in Fig. 6, lines 33 to 48. The code uses the function log1pexp(u), more

stable than by literally adding 1 to e and taking the logarithm, where u = —2 (x?Tu) +Ind, —

Ind;.

2) The cumulative distribution function (CDF) of the Fisher’s z distribution is in equation (8),
which relates to the CDF of the F-distribution in equation (2). With the result that the CDF code
inthe Fisherz. cc file is written as shown in Fig. 6, lines 50 to 63.

3) The quantile function (QF) of the Fisher’s z distribution is in equation (9), which relates to the
QF of the F-distribution in equation (3). The QF code in the Fisherz.cc file is written as
shown in Fig. 7, lines 65 to 80.

4) Generating random variates with the inversion method is exact when an explicit form of the QF
is known [13]. In other cases, the QF of Fisher’s z distribution is not an explicit form, so the
random numbers are generated using some other method. The code to generate random number
inthe Fisherz. cc file is written as shown in Fig. 7, lines 82 to 93.

V| DFisherz.cc |
SourceonSave | 4 S~ ™+ Source
33 Computing pdf
34
35 double
36 DFisherz::d(double x, PDFType type, vector<double const *> const &par, bool give_log) const

37~

38 double mu = Mu(par);

39 double sigma = SIGMA(par);
40 double d1 = pl(par);

41 double d2 = D2(par);

42 double z;

43 double 1p;

44 2=(x-mu) /sigma;

45 1p= log(2)+0.5*d2* (log(d2)-log(dl))-d2*(x-mu)/sigma

46 log(sigma)-lbeta(0.5"d1,0.5%d2) - (d1+d2) /2*1oglpexp((-2*(x-mu) /sigma)+log{d2)-log(dl));
47 return give_log?lp: exp(lp);:

48 }

49

50 Computing CDF

51 double

52 DFisherz::p(double x, vector<double const "> const &par, bool lower, bool give_log)
53 const

54+ {

55 double mu = Mu(par);

56 double sigma = SIGMA(par);

57 double d1 = Dl(par);

58 double d2 = p2(par);

59 double z;

60 z=(x-mu)/sigma;

61 double y = exp(2*z);

62 return pF(y,dl,d2,lower,give_log);
63 }

FIGURE 6. The Code of DFisherz. cc File, Lines 33 to 63

060005-6



Step 6

folder,

PKG_LIBS=-L@JAGS LIBE@ -ljags @JAGS RPATHE

should be changed to

PKG LIBS=-L@JAGS LIBQ@ -1ljags -ljrmath QJAGS RPATHGE

and line 35 of Fig. 8

: Modifying the Makevars.in module as shown in Fig. 8 line 24, which is located in the /runjags/src

OBJECTS = distributions/jags/DFunction.o distributions/jags/DPQFunction.o

distributions/jags/PFunction.o distributions/jags/QFunction.o

distributions/jags/RScalarDist.o distributions/DParl.o distributions/DPar2.
distributions/DPar3.o0 distributions/DPar4.o distributions/DLomax.o
distributions/DMouchel.o distributions/DGenPar.o distributions/DHalfCauchy.

init.o runjags.o testrunjags.o

should be changed to

OBJECTS = distributions/jags/DFunction.o distributions/jags/DPQFunction.o

distributions/jags/PFunction.o distributions/jags/QFunction.o
distributions/jags/RScalarDist.o distributions/DParl.o distributions/DPar2.

distributions/DPar3.0 distributions/DPar4.o distributions/DLomax.o

distributions/DMouchel.o distributions/DGenPar.o distributions/DHalfCauchy.

distributions/DFisherz.o init.o runjags.o testrunjags.o

¥ | DFisherz.cc

: SourceonSave /-
o3 I

86~ {

87 double mu = mu(par);

88 double sigma = SIGMA(par);
89 double di = pl(par);

920 double d2 = D2(par);

91 double zf =rF(dl,d2,rng);

Pp>1)))

64

65 Computing Invers CDF

66

67 double

68 DFisherz::q(double p, vector<double const "> const &par, bool Tlower,
69 const

70~ {

71 if ( (logp & p>0) || ('logp & (p < 0 ||
72 return JAGS_NAN;

73

74 double mu = mu(par);

75 double sigma = siGMa(par);

76 double d1 = pl(par);

77 double d2 = p2(par);

78 double zf =qF(p,dl,d2,lower,log_p);
79 return mu+sigma“0.5%log(zf);

80 }

81

82 Computing Random Number Generator
83

84 double

85 DFisherz::r(vector<double const “> const &par, RNG “rng) const

92 return mu+sigma*0.5%log(zf); return q(rng->uniform(), par,true,
93 1}

94 ]

95

96 #ifndef INCLUDERSCALARDIST

97 1} namespace jags

98 #endif INCLUDERSCALARDIST

99

bool log_p)

false);

“+ Soy

FIGURE 7. The Code of DFisherz. cc File, Lines 64 to 99

060005-7



& Makevars.in

Q

. TP M UM SR UL U UG ST S W GO PMLT SRR e g 1 e
# To force the package to compile assuming a given JAGS version is installed, use th
### JAGS_MAJOR_FORCED environmental variable. This should not be necessary on unix.
L

### once JAGS version 3 is obsolete, the module will be simplified to be dependent on
#H#

### matthew Denwood, 29th march 2016

H#EE

AR A AN AR R R R RAR AR R AR TR R AR R AR AR R R R AR R R R R H R Y

HRAAREREAEA RIS

### Flags

### Prepending 0 to JAGS_MAJOR_VERSION prevents it being set as blank (the C++ code rg
### JAGS_MAJOR_ASSUMED is not needed (always 0) on unix

HERARE ARG RSN

PKG_CPPFLAGS = -I"@JAGS_INCLUDE@" -D JAGS_MAJOR_FORCED=0$(JAGS_MAJOR_VERSION) -D JAGS_M
PKG_LIBS=-L@JAGS_LIB@ -1jags -l1jrmath @JAGS_RPATHR

il il dd b f i fd

#RGEREA SRR AR

### LIBS and objects to be compiled

##% NB: the objects in distributions/jags are only necessary for JAGS <=3, and are exq
SESEREEER GRS

OBJECTS = distributions/jags/DFunction.o distributions/jags/DPQFunction.o distributions

HEREE R R

FIGURE 8. The Code of Makevars.in File, Lines 7 to 38

© | Makevars.win

47
48
49
50
ik
52
53
54
55
56
57
58
39
60
61
62
63
64
65
66
67
68
69
70
71
7
73
74
75
76
77
78
79

=

ifneq (S(strip $(JAGS_VERSION_PRESENT)),)

# First substitute / for space:

JAGS_ROOT_SuUB = $(subst /,S$(space),$(IAGS_ROOT))

# Then isolate the JAGS-x.X.X part:

JAGS_FULL_VERS = $(word $(words $(JAGS_ROOT_SUB)),$(JAGS_ROOT_SUB))

# Then substitute / for space and extract the major version

JAGS_MAJOR_ASSUMED = $(strip $(word 2,$(subst .,$(space),$(subst -,$(space),$(IAGS_FULL
else

# otherwise make an assumption about JAGS_MAJOR and give a warning:

JAGS_MAJOR_ASSUMED = S(strip 4)

S(wa;ning The major version of JAGS could not be determined from $(JAGS_ROOT) - assumin
endi

JAGS_MAJOR = S$(strip $(JAGS_MAJOR_ASSUMED))

endif

# Set the CPPFLAGS accordingly

# Prepending 0 to JAGS_MAJOR_VERSION prevents it being set as blank (the C++ code requi
PKG_CPPFLAGS=-I"$(JAGS_ROOT)/include” -D JAGS_MAJOR_ASSUMED=$(JAGS_MAJOR_ASSUMED) -D JA
PKG_LIBS=-L"$(JAGS_ROOT)/${R_ARCH}/bin" -1jags-$(JAGS_MAIOR) -1jrmath-0

BHEHEERERE RS

### Objects to be compiled

### NB: the objects 1in distributions/jags are only necessary for JAGS <=3, and are exc]
BESEERES SR B RS

OBJECTS = distributions/jags/DFunction.o distributions/jags/DPQFunction.o distributions

LR R R e e e

FIGURE 9. The Code of Makevars .win File, Lines 47 to 79

060005-8



Step 7 : Modifying the Makevars.win module as shown in Fig. 9 line 68, which is located in the /runjags/src

folder,
PKG_LIBS=-L"$ (JAGS_ROOT) /${R_ARCH}/bin" -ljags-$ (JAGS_MAJOR)
should be changed to

PKG LIBS=-L"$ (JAGS_ROOT)/${R ARCH}/bin" -ljags-$ (JAGS MAJOR) -ljrmath-0

and line 76 of Fig. 9
OBJECTS = distributions/jags/DFunction.o distributions/jags/DPQFunction.o
distributions/jags/PFunction.o distributions/Jjags/QFunction.o
distributions/jags/RScalarDist.o distributions/DParl.o distributions/DPar2.o
distributions/DPar3.o0 distributions/DPar4.o distributions/DLomax.o
distributions/DMouchel.o distributions/DGenPar.o distributions/DHalfCauchy.o
init.o runjags.o testrunjags.o

should be changed to
OBJECTS = distributions/jags/DFunction.o distributions/jags/DPQFunction.o
distributions/jags/PFunction.o distributions/jags/QFunction.o
distributions/jags/RScalarDist.o distributions/DParl.o distributions/DPar2.o
distributions/DPar3.o0 distributions/DPar4.o distributions/DLomax.o
distributions/DMouchel.o distributions/DGenPar.o distributions/DHalfCauchy.o
distributions/DFisherz.o init.o runjags.o testrunjags.o

Step 8 : Installing the runjags package which has been modified. Go to the Build menu and click on Install

and Restart. The successful installation can be confirmed by loading the runjags module in runjags

package. To do this, type the following syntax in the R works:
> library(runjags)
> load.runjagsmodule ()
module runjags loaded

NUMERICAL IMPLEMENTATION

To confirm the accuracy of the changes made, we performed a comprehensive numerical experiment, using the
Fisher’s z error regression (ZER) model with one predictor variable. The model is defined as follows

v, =B+ Bx +¢&; i=1,2,...,n (10)
where y; is the value of the response variable in the ith trial; §, and f; are the parameters; x; is the value of the
predictor variable in the ith trial; ; is a random error term, &, ~ Z(dl,dz,0,0'). The likelihood of the model, with

the parameters @ = (d,, d,, 0, By, B1), can be formed by

n %dz 7dz[%j
L(y\x,0)=H2 (d2/dl) €

-1 O l l “2| & lvin(d, /d))
(e ta )

(11)

(d,+dy)2

where &, = y; — (By + P1x;). In this paper, we conduct a Bayesian method to estimate the parameters 0, using
MCMC with the Gibbs sampling algorithm. The Bayesian analysis requires the joint posterior density m(0|y, x),
which is defined by

7(0]y,x)c L(y|x,0)7(0) (12)
where 7(0) are the prior of the parameters model, with
7(0)=7(d)z(d,)z(o)x(B,))7(B). (13)

The n(d,), n(d,), m(o), w(By) and w(B;) are priors for the d;, d,, o, and B; parameters. For the priors of the
d,, d, and o, we take the singly truncated Student ¢ distributions (positive values only) [14], with the degrees of
freedoms vy, v, and vs, the location parameters m;, m, and m,, the scale parameters s;%,s,2 and s32,
respectively. Therefore, dy~ t,, (my,5,°)1(0,), d,~ t,,(m,,s,°)1(0,),and o~ t,, (ms3,s3°)1(0,). For the
priors of the 8, and f3;, we take the normal distributions [15], with the location parameters m,, ms and the scale
parameters s,2,s5%, thus Bo~N(my,s,%) and B;~N(ms,ss?). With the above configuration of the prior
distributions, the joint posterior distribution of the model is given by

060005-9



—AAAA A (14)

The full conditional distributions for all parameters must be derived to implement the Gibbs sampling algorithm for

the joint posterior distribution in equation (14). The full conditional distributions for d, d,, o, B, and f5; are given
by

) N %%] - )
2(d, 1y.xdy 0, By ) e T > (da/d, )2 - oL hzm ; (15)
| 6 1 1 ) [ij (dy+d,)/2 v s
-d d 2| ZL |+ in(d, /dy ) 1 1
9 1y 2 (1—1—6 i J
,1 (%) oy )
w(d | yoxdon oo ) e [ 2t D) ¢ 1oL dazm . (16)
o (11 . EEATER IV
B| —d,,—d —2(7)+ln(d2/d,) 2 2
2 172 [14—6 c ]

(%) e
Pl 1y dds ) [T 22l ‘ . {Hi["‘"%j] A

i 1 e (dy+d,
! [2¢,dJ[H%{Jm%Mq

1 —d,| &

(dz/dl)zd2 e d_(JJ LB, —m, ’ . (18)
1 1 J (dy+dy)/2 EXp| == >
zdl,zdzj {14_ _z[atj"'l“(dz/dl)J

e

2
”(:Bo IYaxadladz,G,ﬂl)oc -

1 —d &
" d,/d, )" (%) —m )
;;(I[}l|y’x’d17d2’g’ﬂ0)oc Z ( z/ 1)2 e TR exp _l(ﬂl msj . (19)
aoplly Ly e N 208
27 P27 ) 14e \°

Each draw can be performed using the Adaptive Rejection Metropolis Sampler, implemented in JAGS. A tutorial to
illustrate how to use the JAGS can be found in the JAGS manual [16].

For the numerical implementation, some simulated datasets were generated with known parameter values of the
small, moderate, and large sample sizes, and then were followed by fitting the model. Suppose that x =
(xq, %3, .., Xn)" is a vector of independent variable which has taken the values 1 to n; where n = 20,30,100 and
suppose that S, =10, [; =2. We generated some datasets from the model of equation (10) where

z(dl,dz,0,0'). The scenarios were considered by applying five types of error terms. The scenarios are as
follows:

e Scenario 1: d; =1, d, = 10,0 = 8, represent the highly skewed left [17] and fat-tailed regression models,
where the skewness and excess kurtosis of —1.43 and 3.67, respectively;

060005-10



f(x)
000 005 010 015 020 0.25

FIGURE 10. Probability Density Functions (p.d.f) of The Fisher's z Distribution when u = 0, =8 at
Various Choices of d; and d,

2 J
- —d;= 1,d, =10
—_—d,= 1d,= 1
—d;=10,d, = 3 |
© | —d=10d,=7 {
e —— dy = 30,d, =30 -
()
© | |
o
-
=
St
LS
X
=
!
o~ /
by |
o j
o

T T T | T T |
-30 -20 -10 0 10 20 30

FIGURE 11. Cumulative distribution functions (CDF) of The Fisher's z Distribution when u = 0, 0=8 at
Various Choices of d; and d,

e Scenario 2: d; = 1, d, = 1,0 = 8, represent the fairly symmetrical [17] and fat-tailed regression models, the
error term being lighter than the previous scenario, where the skewness and excess kurtosis are 0 and 2,
respectively;

e Scenario 3: dy = 10, d, = 3,0 = 8, represent the moderately skewed [17] and fat-tailed regression models,
the error term being lighter than the previous scenario, where the skewness and excess kurtosis are 0.63 and
1.07, respectively;

e Scenario 4: d; = 10, d, = 7,0 = 8, represent the fairly symmetrical and fat-tailed regression models, the
error term being lighter than the previous scenario, where the skewness and excess kurtosis are 0.14 and 0.30,
respectively;

e Scenario 5: d; = 30, d, = 30,0 = 8, represent the fairly symmetrical and fat-tailed regression models, the
error term is the lightest, where the skewness and excess kurtosis are 0 and 0.07, respectively.

The comparison of graphical visualizations for the error terms in scenarios 1 to 5 can be seen in Fig. 10 and Fig.11.
Furthermore, we have fitted and compared the performance of the ZER model with the Gaussian error regression

060005-11



(GER) model. To compare the performance of the models, we use the Widely Applicable Information Criterion
(WAIC) [18-20]. Vehtari et al. [19] implemented the WAIC calculations in the R package, called the loo package.
For scenario 1 with large samples n = 100, the generated data is shown in Fig. 12, which is generated by using
the following code:
> n <- 100
> x <- seqg(l, n, by = 1)
data<-list (x=x,n=n)
parameters<-c( "e","y")
models<-"
model
{
for (i in 1:n){
e[i] ~ dz (1, 10 , 0, 8)
y[1i]=10+2*x[1i]+e[1]
}
} n
generate <-run.jags( method=c("rjags"),
data=data,
inits=1ist (.RNG.name="base: :Super-Duper", .RNG.seed=1),
model=models,
monitor=parameters ,
n.chains=1,
sample=1,
thin=1,
summarise=FALSE,
modules=c ("runjags"))

+ 4+ + FFFF AV F AV VYV

<
100 150 200

50

0 20 40 60 80 100

X

FIGURE 12. Scatterplot of y versus x

The estimator, i.e., the posterior mean obtained after running two chains for 1,000 iterations, using 30 thin
intervals and discarding the first 40000 as burn-in and adapting, for a total of 2000 samples. The code is written as
follows:
gen<-as.vector (generateSmcmc[[1]])

e <- gen[l1l:100]

vy <- gen[101:200]

n <-length (y)

data <-list(y=y,n=n, x=x)

parameters<-c ("dl1","d2", "sigma","betalO","betal")

initl<-1list(dl=1, d2=10, sigma=8, betal=2, betal0=10, .RNG.name="base::Super-Duper",
.RNG.seed=1)

VVVVYVYVYV

060005-12



> init2<-1ist(dl=1, d2=10, sigma=8, betal=2, betal0=10, .RNG.name="base::Wichmann-
Hill", .RNG.seed=2)
> models<-"
+ model
{
for (i in 1:n){
y[i] ~ dz(dl,d2,mu[i],sigma)
mu[i]<- betal + betal * x[i]
}
betal ~ dnorm (10, 1)
betal ~ dnorm(2, 1)
dl ~dt( 1, 0.1,3)T(0.0001,)
dz ~ dt (10, 0.1,3)T(0.0001,)
sigma ~ dt( 8, 0.1,3)T(0.0001,)
}"
obj <-run.jags( method=c("rjags"),
data=data,
inits=1list(initl,init2),
model=models,
monitor=parameters ,
adapt=20000 ,
burnin=20000 ,
sample=1000 ,
thin=30,
summarise=TRUE,
n.chains=2,
modules=c ("runjags"))

B e T e e T 2 T i s e o S S S

The results of the simulation can be examined using the default print method as follows:
> obj

JAGS model summary statistics from 2000 samples (thin = 30; chains = 2; adapt+burnin

= 40000) :

Lower95 Median Upper95 Mean SD Mode MCerr MC%ofSD SSeff
dl 0.6475 1.2277 2.181 1.302 0.41932 -- 0.00938 2.2 2000
d2 3.8143 10.5320 18.836 11.159 4.48220 -- 0.10022 2.2 2000
sigma 6.0981 9.0592 13.354 9.326 1.90940 -- 0.04443 2.3 1847
beta0 8.5353 10.2320 11.773 10.239 0.83176 -- 0.01922 2.3 1874
betal 1.9731 2.0083 2.044 2.008 0.01806 -- 0.00040 2.2 2006

AC.300 psrf

dl -0.029562 1.0001
dz2 0.002014 1.0007
sigma -0.026960 1.0001
beta0 -0.022871 1.0003
betal -0.003622 1.0013

Total time taken: 3.9 minutes

The results show that the posterior mean values of all parameters are similar to the value of each parameter at the
model setting in the first scenario. The potential scale reduction factor (psrf) values are less than 1.01 and the
effective sample size (Sseff) values are greater than 400, indicating the convergences of the MCMC chains [20].

Table 1 shows the simulation result for all scenarios, indicating that the ZER model is better than the GER
model. WAIC values for the ZER model are the smallest in all scenarios and for all sample sizes. For the first
scenario, where the dataset is generated using the highly skewed to left and fat-tail error term, the WAIC values of
the ZER model for the sizes of the twenty, thirty, and one hundred samples are 143.7, 207.3, and 701.6, respectively.
While, for the same scenario, the WAIC values of the GER model for the sizes of the twenty, thirty and one hundred
samples are 156.5, 223.5 and 732.6, respectively. Likewise for the other scenarios, the WAIC values of the ZER
model are smaller than the GER model.

060005-13



TABLE 1. Comparison the Fisher’s z error regression (ZER) model and the Gaussian error regression (GER) model using
widely applicable information criterion (WAIC) at several scenarios

Scenarios Skewness Excess n =20 n =30 n =100
kurtosis ZER GER ZER GER ZER GER
1 -1.43 3.67 143.7* 156.5 207.3% 2235 701.6* 732.6
2 0,00 2.00 168.3* 171.5 245 4% 248.8 800.3* 820.4
3 0.63 1.07 124.8* 129.8 187.7% 202.3 588.9* 628.2
4 0.14 0.30 105.1* 121.7 154.6* 172.1 497.5* 516.9
5 0,00 0.07 75.8% 109.8 110.9* 140.1 357.7* 363.8
Scenario 1: g;~z( 1,10,0, 8);
Scenario 2: g;~z( 1, 1,0,8);
Scenario 3: g;~z(10, 3,0,8);
Scenario 4: £;~z(10, 7,0,8);
Scenario 5: £;~z(30, 30,0, 8).
* indicates the smallest value.
CONCLUSION

This paper introduces the Fisher’s z distribution, i.e., the standardized Fisher's z distribution which added a
location parameter p and a scale parameter 0. We provide step-by-step instructions on how to adding Fisher’s z
distributions to the runjags package, by modifying the package. In order to affirm the accuracy of our
implementation, we ran a comprehensive numerical experiment, using linear regression model. Some simulated
datasets were generated with known parameter values of the ZER model, with the small, moderate, and large sample
sizes. We compared the performance of the ZER model with the GER model. The results show that the ZER model
is better than the GER model.

REFERENCES
1. M. Plummer, in Proceedings of the 3rd International Workshop on Distributed Statistical Computing (Vienna,
Austria, 2003), pp. 1-10.
2. L. Ntzoufras, Bayesian Modeling Using WinBUGS (John Wiley & Sons, 2009).
3. M. J. Denwood, Journal of Statistical Software 71, 1 (2016).
4. D. Wabersich and J. Vandekerckhove, Behavior Research Methods 46, 15 (2014).
5. P.J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection (John wiley & sons, 1987).
6. A. Azzalini, in Recent Advances in Robust Statistics: Theory and Applications (Springer, 2016), pp. 1-16.
7. R. A. Fisher, in Proceedings of the International Congress of Mathematics (Toronto, 1924), pp. 805-813.
8. L. A. Aroian, The Annals of Mathematical Statistics 12, 429 (1941).
9. N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Second (John Wiley&Sons,

1995).

10. W. Gilchrist, Statistical Modelling with Quantile Functions (CRC Press, 2000).

11. RStudio Team, RStudio: Integrated Development Environment for R (RStudio, Inc., Boston, MA, 2019).

12. R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical
Computing, Vienna, Austria, 2020).

13. L. Devroye, Non-Uniform Random Variate Generation (Springer-Verlag, New York Inc., 1986).

14. H.-J. Kim, Journal of the Korean Statistical Society 37, 81 (2008).

15. N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions Volume 1, Second (John
Wiley & Sons, Ltd, 1994).

16. M. Plummer, JAGS Version 4.3.0 User Manual (2017).

17. M. G. Bulmer, Principles of Statistics (M.I.T. PRESS, 1967).

18. S. Watanabe, Journal of Machine Learning Research 11, 3571 (2010).

19. A. Vehtari, A. Gelman, and J. Gabry, Statistics and Computing 27, 1413 (2017).

20. A. Vehtari, A. Gelman, D. Simpson, B. Carpenter, and P. C. Biirkner, Bayesian Analysis (2020)
https://doi.org/10.1214/20-BA1221.

060005-14


https://doi.org/10.18637/jss.v071.i09
https://doi.org/10.3758/s13428-013-0369-3
https://doi.org/10.1214/aoms/1177731681
https://doi.org/10.1016/j.jkss.2007.06.001
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1214/20-BA1221

