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Abstract 

MSNBurr and MSTBurr distribution have been developed as Neo-Normal distributions that represent a relaxation 

of normality. The difference between them is that the MSTBurr’s peak is below MSNBurr’s. In this paper, we 

propose a MSEPBurr distribution with its peak could be not only lower but also high-er than MSNBurr. 

Furthermore, we study several properties of MSEPBurr, such as mean, variance, skewness, kurtosis, and quantile. 

The MSEPBurr parameters are estimated by using the Bayesian approach with the BUGS language implementation 

for its computation. We employ simulation study and use existing data to illustrate the application of the regression 

model. In real data, we notice that MSEPBurr has similar performance with MSNBurr and MSTBurr that they 

outperform Normal and Student-t distribution in Australian athlete data because their skewness can accommodate 

long left tail excellently. However, their performance is less than the Student-t model in chemical reaction rate 

data because their skewness can not accommodate long right tail perfectly. Although in general their perfor-mance 

is the same,  we observe that the MSEPBurr performs better than the MSNBurr and the MSTBurr in some simulated 

data. 

Keywords: Distribution, Bayesian, Normal Relaxation, MSEPBurr, MSNBurr, MSTBurr  

1. Introduction  

The Normal distribution is commonly used in statistical modeling. However, the use of this 

distribution is sometimes incompatible with the available data. Therefore, some distributions 

have been developed as a relaxation of the Normal distribution. Subbotin distribution (Subbotin, 

1923) and Exponential Power (EP) distribution (Box and Tiao, 1973) represent a relaxation of 

the Normal distribution in terms of kurtosis. Both distributions can be mesokurtic like Normal 

distribution, platykurtic, or lepto-kurtic. Another form of the Normal distribution relaxation was 

done on its skewness. It has been proposed by Azzalini (1985) called the Skew-Normal 
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distribution. This distribution has symmetrical or skewed properties with an unstable mode at 

its location parameter. An extended Skew-Normal distribution has been applied to regression 

analysis by Olosunde Akinlolu (2011). In contrast to Azzalini (1985), Fernandez and Steel 

(1998) proposed the Skew-Normal distribution that has a stable mode of the location parameter. 

 

The study of the skewed or symmetrical distribution has been carried out by Iriawan (2000) 

who developed the “Modified to be Stable as Normal from Burr”, hereinafter referred to 

MSNBurr distribution. It was derived from the modification of Burr type II distribution (Burr, 

1942). The mode of MSNBurr distribution is stable like that of the Skew-Normal distribution 

(Fernandez and Steel, 1998). The symmetrical MSNBurr perfectly fits the Normal distribution, 

but its tails are fatter than that of the Normal distribution.  

 

Iriawan (2000) also developed the “Modified to be Stable as t from Burr”, hereinafter referred 

to MSTBurr distribution with its peak could be below MSNBurr’s when their location and scale 

parameters are the same. In this paper, we propose “Modified to be Stable Exponential Power 

from Burr”, henceforth referred to MSEPBurr distribution with its peak could be not only lower 

but also higher than MSNBurr distribution. 

2. The Neo-Normal Distribution  

The Neo-Normal distribution is a distribution, which represents a relaxation of the Normal 

distribution (Iriawan, 2000). This distribution can be the same or different from the Normal 

distribution due to the shape parameter that plays a role in assigning the magnitude of kurtosis 

or skewness. One of the preliminary works of relaxation of the Normal distribution was 

conducted by Box and Tiao (1973) who investigate EP distribution. The probability density 

function (pdf) of a random variable 𝑍1 that follows EP distribution is 

 
𝑓(𝑧1|𝜇, 𝜎, 𝑣) =

𝐶(𝑣)

𝜎
𝑒𝑥𝑝 (−𝑞(𝑣) |

𝑧1 − 𝜇

𝜎
|
2/(1+𝑣)

), (1) 

where −∞ < 𝑧1 < ∞, −∞ < 𝜇 < ∞, 𝜎 > 0,−1 < 𝑣 < 1, 

𝑞(𝑣) = (
𝛤 (

3

2
(1 + 𝑣))

𝛤 (
1

2
(1 + 𝑣))

)

1/(1+𝑣)

, 𝐶(𝑣) =
𝛤 (

3

2
(1 + 𝑣))

1

2

(1 + 𝑣)𝛤 (
1

2
(1 + 𝑣))

3

2

. 

The height of the mode of the EP distribution could be higher or lower than the Normal 

distribution, depending on the value of parameter 𝑣. The Normal distribution is a special form 

of EP distribution when 𝑣 = 0. 
 

Iriawan (2000) has developed the Neo-Normal distribution from modified Burr type II 

distribution (Burr, 1942). The Burr type II distribution is also known as Generalized Logistic 

type I (Johnson et al., 1995; Abdelfattah, 2015). The cumulative distribution function (CDF) 

and pdf of a random variable 𝑍2 that follows the Burr type II distribution are given by 

 𝐹(𝑧2) = (1 + 𝑒𝑥𝑝( − 𝑧2))
−𝛼, (2) 

and  

 𝑓(𝑧2|𝛼) = 𝛼 𝑒𝑥𝑝( − 𝑧2)(1 + 𝑒𝑥𝑝( − 𝑧2))
−(𝛼+1), (3) 



MSEPBurr Distribution: Properties and Parameter Estimation 

Pak.j.stat.oper.res.  Vol.XV  No.1 2019  pp179-193 181 

respectively, where −∞ < 𝑧2 < ∞, and 𝛼 > 0. The mode of Burr type II distribution is varied 

according to the value of parameter 𝛼. Iriawan (2000) modified Equation (2) by transforming 

𝑍3 = 𝑍2 − 𝑙𝑜𝑔 𝛼 so that its CDF became as follows 

 
𝐹(𝑧3) = (1 +

𝑒𝑥𝑝( − 𝑧3)

𝛼
)
−𝛼

, (4) 

and the corresponding pdf in Equation (3) became 

 
𝑓(𝑧3|𝛼) = 𝑒𝑥𝑝( − 𝑧3) (1 +

𝑒𝑥𝑝( − 𝑧3)

𝛼
)
−(𝛼+1)

. (5) 

The distribution with CDF in the Equation (4) and pdf in Equation (5) was called the “Modified 

Stable Burr” or 𝑀𝑆𝐵𝑢𝑟𝑟(𝛼). The mode of the MSBurr would be stable at 𝑧3 = 0 
for any value 

of the parameter 𝛼. Similar to Burr type II distribution, howe-ver, the density of its mode always 

lower than that of the Standard Normal distribu-tion. For comparison with 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2), 
Iriawan (2000), therefore, added a parameter 𝜔 and defined a transformation as follows 

 
𝑍4 = 𝜇 +

�̃�

𝜔
𝑍3.  

The CDF in Equation (4) would be as follows: 

 

𝐹(𝑧4) = (1 +
𝑒𝑥𝑝( − 𝜔 (

𝑧4−�̃�

�̃�
))

𝛼
)

−𝛼

, (6) 

and its pdf in Equation (5) is transformed into: 

 𝑓(𝑧4|𝜔, 𝛼, 𝜇, �̃�)

=
𝜔

�̃�
𝑒𝑥𝑝 (−𝜔 (

𝑧4 − 𝜇

�̃�
))(1

+
𝑒𝑥𝑝 (−𝜔 (

𝑧4−�̃�

�̃�
))

𝛼
)

−(𝛼+1)

, 

(7) 

where −∞ < 𝑧4 < ∞, ,~ −  �̃� > 0, 𝛼 > 0. 

 

As described above, Iriawan (2000) has derived MSBurr distribution from modified Burr type 

II distribution, such that its mode is stable at its location parameter 𝜇 either it is symmetric or 

skewed. Further, the MSBurr distribution could be modified, in such that its peak as high as 

certain symmetric unimodal distribution. The step for the last modification is described in the 

Theorem 1.  

 

Theorem 1. Making the density of MSBurr’s mode the same as the density of other symmetrical unimodal 

distributions’ mode 

Suppose 𝑍4 follows 𝑀𝑆𝐵𝑢𝑟𝑟(𝜔, 𝛼, 𝜇, �̃�) and 𝑍∗ follows a symmetric uni-modal distribution 

with pdf as 

ℎ(𝑧∗|𝜇∗, 𝜎∗, 𝜃∗) = 𝑔 (
𝑧∗ − 𝜇∗

𝜎∗
|𝜃∗), 

where 𝑧∗ ∈ 𝑅, h and g are pdf of unstandardized and standardized 𝑍∗respectively, 𝜇∗ is a 

location parameter; 𝜎∗ is a scale parameter, and 𝜃∗ is a shape parameter. If it is given that 
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i. ℎ(𝜇∗|𝜎∗, 𝜃∗) =
1

�̃�(𝜃∗)𝜎∗
, where �̃�(𝜃∗) is the function of shape parameter that is a 

normalizing constant of g, 
ii. �̃� = 𝜎∗, and 

iii. 𝑓(�̃�|𝜔, 𝛼, �̃�) = ℎ(𝜇∗|𝜎∗, 𝜃∗), where f(.)  is pdf of MSBurr distribution, 
then 

𝜔 =
(1 +

1

𝛼
)
(𝛼+1)

�̃�(𝜃∗)
. 

 

Proof: 

Suppose 𝑍4~𝑀𝑆𝐵𝑢𝑟𝑟(𝜔, 𝛼, 𝜇, �̃�), so pdf of 𝑍4 on its location parameter 𝜇  follows 

 

𝑓(𝜇|𝜔, 𝛼, �̃�) =
𝜔

�̃�
𝑒𝑥𝑝 (−𝜔 (

𝜇 − 𝜇

�̃�
))(1 +

𝑒𝑥𝑝 (−𝜔 (
�̃�−�̃�

�̃�
))

𝛼
)

−(𝛼+1)

, 

                        =
𝜔

�̃�
(1 +

1

𝛼
)
−(𝛼+1)

. 

 

Given the mode of 𝑍4 is equal to 𝑍∗, 

      𝑓(𝜇|𝜔, 𝛼, �̃�) = ℎ(𝜇∗|𝜎∗, 𝜃∗), 

  
𝜔

�̃�
(1 +

1

𝛼
)
−(𝛼+1)

=
1

�̃�(𝜃∗)𝜎∗
. 

 

If �̃� = 𝜎∗, then we get 

 

    𝜔 =
(1 +

1

𝛼
)
(𝛼+1)

�̃�(𝜃∗)
.  

  

Corollary 1.  MSNBurr distribution 

The density of 𝑀𝑆𝐵𝑢𝑟𝑟(𝜔, 𝛼, 𝜇, �̃�) on its mode will be equal to the density of 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, �̃�)’s 

mode when 

 

    𝜔 =
(1 +

1

𝛼
)
(𝛼+1)

√2𝜋
. 

(8) 

 

Corollary 2. MSTBurr distribution 

The density of 𝑀𝑆𝐵𝑢𝑟𝑟(𝜔, 𝛼, 𝜇, �̃�) on its mode will be equal to the density of 𝑡(�̃�, �̃�, �̈�)′𝑠 mode 

when 

 

    𝜔 =
𝛤 (

�̈�+1

2
) (1 +

1

𝛼
)
(𝛼+1)

√�̈�𝜋𝛤 (
�̈�

2
)

. (9) 

 

When the MSBurr distribution has 𝜔 as in Equation (8), it is called the “Modified to be Stable 

to Normal from Burr” or 𝑀𝑆𝑁𝐵𝑢𝑟𝑟(𝛼, 𝜇, �̃�). Meanwhile, the MSBurr dis-tribution is called the 
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“Modified to be Stable to t from Burr” or MSTBurr(�̈�, 𝛼, 𝜇, �̃�)  when 𝜔 satisfies Equation (9)  

(Iriawan, 2000). 

 

Following Corollary 1 and Corollary 2, the new modified MSBurr distribution with its peak as 

high as the mode of EP distribution is proposed. Equation (1) showed that the normalizing 

constant has a function of shape parameter as follows 

 

    �̃�(𝑣) =
(1 + 𝑣)𝛤 (

1

2
(𝑣 + 1))

3

2

𝛤 (
3

2
(𝑣 + 1))

1

2

.  

By employing Theorem 1, MSBurr’s peak would be as high as EP’s when  

 

    𝜔 =
𝛤 (

3

2
(𝑣 + 1))

1

2
(1 +

1

𝛼
)
(𝛼+1)

(1 + 𝑣)𝛤 (
1

2
(𝑣 + 1))

3

2

. (10) 

 

Figure 1. The comparison of MSEPBurr(0,1,0,1), MSEPBurr(-0.9,1,0,1), MSEPBurr (0.9,1,0,1), and 

MSNBurr(1,0,1) 

 

The MSBurr distribution with 𝜔 satisfies Equation (10) is referred to as the MSEP-Burr 

distribution. Because it was derived from EP distribution, it is natural if its peak could be either 

lower or higher than that of MSNBurr distribution when their location and scale parameters are 

the same. The comparison of MSEPBurr distribution and MSNBurr distribution was shown in 

Figure 1. This figure shows that MSEPBurr distribution  close to MSNBurr distribution when 

𝑣 = 0. 

3. Properties of MSEPBurr Distribution 

The MSEPBurr distribution is a particular form of MSBurr distribution, then its pro-perties, 

such as mean, variance, skewness, and kurtosis, could be measured from the central moment 

deriving from the cumulant generating function of the MSBurr. The cumulant generating 

function of 𝑀𝑆𝐵𝑢𝑟𝑟(𝜔, 𝛼, 𝜇, �̃�) is defined as follows 
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𝐾𝑍4(𝑡) = 𝑡𝜇 −

�̃�𝑡

𝜔
𝑙𝑜𝑔 𝛼 + 𝑙𝑜𝑔 𝛤 (𝛼 +

�̃�𝑡

𝜔
) + 𝑙𝑜𝑔 𝛤 (1 −

�̃�𝑡

𝜔
)

− 𝑙𝑜𝑔 𝛤 (𝛼). 
(11) 

The first moment of 𝑀𝑆𝐵𝑢𝑟𝑟(𝜔, 𝛼, 𝜇, �̃�) deriving from the first cumulant (𝜅1) is  
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where 𝜓0(. )is digamma function. Furthermore, the r-th central moment deriving from r-th 

cumulant is 
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where 𝜓(𝑟−1)(. )is an r-th derivative of  𝑙𝑜𝑔 𝛤 (. ), 𝑟 = 2,3, . .. .  Based on moment in Equ-ation 

(12) and central moment in Equation (13) where 𝜔 follows Equation (10), the mean (𝐸(𝑍4𝑒)), 
variance (𝑉𝑎𝑟(𝑍4𝑒)),  skewness (𝛾1(𝑍4𝑒)), and excess kurtosis (𝛾2(𝑍4𝑒)) of 𝑍4𝑒 which follows 

the MSEPBurr distribution is defined as 

 

𝐸(𝑍4𝑒) = 𝜇 +
�̃�(1 + 𝑣)𝛤 (

1

2
(𝑣 + 1))

3

2

𝛤 (
3

2
(𝑣 + 1))

1

2
(1 +

1

𝛼
)
(𝛼+1)

(𝜓0(𝛼) − 𝜓0(1) − 𝑙𝑜𝑔 𝛼), (14) 

 

𝑉𝑎𝑟(𝑍4𝑒) =
�̃�2(1 + 𝑣)𝛤 (

1

2
(𝑣 + 1))

3

𝛤 (
3

2
(𝑣 + 1)) (1 +

1

𝛼
)
2(𝛼+1)

(𝜓1(𝛼) + 𝜓1(1)), (15) 

 
𝛾1(𝑍4𝑒) =

(𝜓2(𝛼) − 𝜓2(1))

(𝜓1(𝛼) + 𝜓1(1))
3

2

, (16) 

 
𝛾2(𝑍4𝑒) =

(𝜓3(𝛼) + 𝜓3(1))

(𝜓1(𝛼) + 𝜓1(1))2
, (17) 

 
respectively, where 𝜓1(. ), 𝜓2(. ), 𝜓3(. )are trigamma, tetragamma, and pentagamma functions 

respectively .  
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Figure 2. Plot of skewness of MSEPBurr where 0.1 ≤ 𝛼 < 10 

 

It is easy to see that 𝛼 is a parameter which has a role in determining the magnitude of the 

skewness and kurtosis. Figure 2 shows that MSEPBurr distribution is symme-tric  when 𝛼 = 1. 
Otherwise, this distribution is left skew if 𝛼 < 1, and is right skew if  𝛼 > 1.  It is shown that 

the magnitude of negative skewness is greater than positive skewness. It means that the 

MSEPBurr distribution more adaptively accommodate the left skew data than right skew one, 

in particular when 𝛼 < 1. Moreover, Figure 3 shows that the minimum value of excess kurtosis 

in MSEPBurr distribution is 1.2, which is  when 𝛼 = 1. This shows that the MSEPBurr 

distribution is leptokurtic. The kurtosis is influenced by the value of skewness. The left skew 

MSEPBurr distribution has a sharper peak than the right skew one.  

 

 

Figure 3. Plot of MSEPBurr’s excess kurtosis 

 

Another property discussed in this paper is the quantile of the MSEPBurr distribution. We 

obtain the quantile by using  inverse of  CDF in Equation (6), where  𝜔 follows Equation (10), 

that leads to 

 

𝑄(𝑢) = 𝜇 −
�̃�(1 + 𝑣)𝛤 (

1

2
(𝑣 + 1))

3

2

𝛤 (
3

2
(𝑣 + 1))

1

2
(1 +

1

𝛼
)
(𝛼+1)

(𝑙𝑜𝑔 𝛼 + 𝑙𝑜𝑔 (𝑢−
1

𝛼 − 1)) (18) 

Based on the Equation (18), the random numbers that have MSEPBurr distribution could be 

drawn by using the invers transform as in  Algorithm 1. 

 

Algorithm 1. Generating the MSEPBurr random number 

Step 1. Generate 𝑢~𝑈(0,1),  
Step 2. Calculate 𝑧4𝑒 = 𝑄(𝑢) from Equation (18), 

Step 3. Return 𝑧4𝑒 (as MSEPBurr random number). 

4. Parameter Estimation of MSEPBurr Using Bayesian 

1
.2

 

1 
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We estimate the MSEPBurr distribution parameters using the Bayesian approach. The 

parameter estimator is obtained from the posterior distribution, which is proportional to the 

likelihood times the prior distribution. Let 𝑍4𝑖 follows the MSEPBurr(𝑣, 𝛼, 𝜇, �̃�) distribution, 

i=1, 2, ...,n, where n is the sample size, then the likelihood of the MSEPBurr distribution is 

 

𝑓(𝒛𝟒𝒆|𝑣, 𝛼, 𝜇, �̃�) =∏
𝛤(

3

2
(𝑣 + 1))

1

2
(1 +

1

𝛼
)
(𝛼+1)

�̃�(1 + 𝑣)𝛤 (
1

2
(𝑣 + 1))

3

2

𝐸𝑖

(1 +
𝐸𝑖

𝛼
)
(𝛼+1)

𝑛

𝑖=1

, 

                            =
𝛤 (

3

2
(𝑣 + 1))

𝑛

2
(1 +

1

𝛼
)
𝑛(𝛼+1)

�̃�𝑛(1 + 𝑣)𝑛𝛤 (
1

2
(𝑣 + 1))

3𝑛

2

∏
𝐸𝑖

(1 +
𝐸𝑖

𝛼
)
(𝛼+1)

𝑛

𝑖=1

, 

 

 

 

 

 

 

(19) 

where 𝒛𝟒𝒆 = (𝑧4𝑒1, 𝑧4𝑒2, . . . , 𝑧4𝑒𝑛)
𝑇 , and 

 

𝐸𝑖 = 𝑒𝑥𝑝

(

 
 𝛤 (

3

2
(𝑣 + 1))

1

2
(1 +

1

𝛼
)
(𝛼+1)

(1 + 𝑣)𝛤 (
1

2
(𝑣 + 1))

3

2

(
𝑧4𝑒𝑖 − 𝜇

�̃�
)

)

 
 
.  

 

In this research, the prior distributions for the MSEPBurr parameters are set to: 
a. 𝛼~𝐺𝑆𝐵𝑒𝑡𝑎(𝑞∗, 𝑙𝑏 , 𝑢𝑏), 0 < 𝑙𝑏 < 𝑢𝑏 < ∞,  

where GSBeta or Generalized Symmetrical Beta is a Beta distribution wich its domain is 
widened in the interval 𝑙𝑏 < 𝛼 < 𝑢𝑏 , and it has pdf as 

 
𝑓(𝛼) =

𝛤(2𝑞∗)((𝛼 − 𝑙𝑏)(𝑢𝑏 − 𝛼))
(𝑞∗−1)

𝛤(𝑞∗)2(𝑢𝑏 − 𝑙𝑏)
(2𝑞∗−1)

, (20) 

where 𝑞∗ ≥ 1 (Box and Tiao, 1973), 

b. 𝑣~𝐺𝑆𝐵𝑒𝑡𝑎(𝑞𝑣
∗, 𝑙𝑏𝑣, 𝑢𝑏𝑣), −1 < 𝑙𝑏𝑣 < 𝑢𝑏𝑣 < 1, where its pdf is 

 
𝑓(𝑣) =

𝛤(2𝑞𝑣
∗)((𝑣 − 𝑙𝑏𝑣)(𝑢𝑏𝑣 − 𝑣))

(𝑞𝑣
∗−1)

𝛤(𝑞𝑣∗)2(𝑢𝑏𝑣 − 𝑙𝑏𝑣)(2𝑞𝑣
∗−1)

, (21) 

where 𝑞𝑣
∗ ≥ 1 

c. 𝜇~𝑁𝑜𝑟𝑚𝑎𝑙(𝜐0, 𝜑0
2) where its pdf is 

 
𝑓(�̃�) =

1

𝜑0√2𝜋
𝑒𝑥𝑝 (−

1

2

(�̃� − 𝜐0)
2

𝜑02 0

) (22) 

d. �̃�~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝑔𝑎𝑚𝑚𝑎(𝑎0, 𝑏0) where its pdf is 

 
𝑓(�̃�) =

𝑏0
𝑎0

𝛤(𝑎0)
�̃�(−𝑎0−1) 𝑒𝑥𝑝 (−

𝑏0
�̃�
). (23) 

 

The joint posterior distribution of MSEPBurr parameters, obtained by multiplying the 

likelihood in Equation (19) and the independent prior distributions in Equation (20) to Equation 

(23), is defined as follows 

 𝑓(𝑣, 𝛼, 𝜇, �̃�|𝒛𝟒𝒆) ∝ 𝑓(𝒛𝟒𝒆|𝑣, 𝛼, 𝜇, �̃�)𝑓(𝑣)𝑓(𝛼)𝑓(�̃�)𝑓(�̃�). (24) 

The full conditional distribution of each parameters derived from Equation (24) are 



MSEPBurr Distribution: Properties and Parameter Estimation 

Pak.j.stat.oper.res.  Vol.XV  No.1 2019  pp179-193 187 

 

 

  
a.    𝑓(𝑣|𝐳𝟒𝒆, 𝛼, 𝜇, �̃�) ∝

𝛤 (
3

2
(𝑣 + 1))

𝑛

2

(1 + 𝑣)𝑛𝛤 (
1

2
(𝑣 + 1))

3𝑛

2

∏
𝐸𝑖

(1 +
𝐸𝑖

𝛼
)
(𝛼+1)

𝑛

𝑖=1

 

                                  × ((𝑣 − 𝑙𝑏𝑣)(𝑢𝑏𝑣 − 𝑣))
(𝑞𝑣
∗−1) 

(25) 

 

 

  

b.    𝑓(𝛼|𝐳𝟒𝒆, 𝑣, 𝜇, �̃�) ∝ (1 +
1

𝛼
)
𝑛(𝛼+1)

∏
𝐸𝑖

(1 +
𝐸𝑖

𝛼
)
(𝛼+1)

𝑛

𝑖=1

 

                                      × ((𝛼 − 𝑙𝑏)(𝑢𝑏 − 𝛼))
(𝑞∗−1) 

(26) 

 

 

 

  

c.    𝑓(𝜇|𝒛𝟒𝒆, 𝛼, 𝑣, �̃�) ∝ 𝑒𝑥𝑝 (−
1

2

(𝜇 − 𝜐0)
2

𝜑02 0

)∏
𝐸𝑖

(1 +
𝐸𝑖

𝛼
)
(𝛼+1)

𝑛

𝑖=1

 (27) 

 

 

 

  

d.    𝑓(�̃�|𝒛𝟒𝒆, 𝛼, 𝑣, 𝜇) ∝ �̃�
−(𝑛+𝑎0+1) 𝑒𝑥𝑝 (−

𝑏0
�̃�
) .∏

𝐸𝑖

(1 +
𝐸𝑖

𝛼
)
(𝛼+1)

𝑛

𝑖=1

  (28) 

 

We employ Markov Chain Monte Carlo (MCMC) algorithm, particularly Gibbs Sam-pler 

algorithm in the computation of the MSEPBurr parameters estimation. This algo-rithm is 

described in Algorithm 2. Algorithm 2 could be applied into Bayesian In-ference Using Gibbs 

Sampler (BUGS) language (Lunn et al., 2000), that employs Just Another Gibbs Sampling 

(JAGS) software (Plummer, 2003). This program is run by the runjags package (Denwood, 

2016) in R software (R Core Team, 2017). The MSEPBurr had been added in the runjags 

module as a new distribution in JAGS. 

 

Algorithm 2. The Gibbs Sampler algorithm for the MSEPBurr parameter estimation 

1. Set the initial value of 𝑣(0), 𝛼(0), . �̃�(0), �̃�(0).  

2. For each t-th iteration, where t = 1,2, ..., T, T is number of samples, 

a. Generate 𝑣(𝑡)from 𝑓(𝑣(𝑡)|𝒛𝟒𝒆, 𝛼(𝑡−1), �̃�(𝑡−1), �̃�(𝑡−1)) in Equation (25), 

b. Generate 𝛼(𝑡) from 𝑓(𝛼(𝑡)|𝒛𝟒𝒆, 𝑣(𝑡), �̃�(𝑡−1), �̃�(𝑡−1)) in Equation (26), 

c. Generate �̃�(𝑡)from  𝑓(�̃�(𝑡)|𝒛𝟒𝒆, 𝛼(𝑡), 𝑣(𝑡), �̃�(𝑡−1)) in Equation (27), 

d. Generate �̃�(𝑡) from 𝑓(�̃�(𝑡)|𝒛𝟒𝒆, 𝛼(𝑡), 𝑣(𝑡), �̃�(𝑡)) in Equation (28). 

3. Return 𝑣(1), . . . , 𝑣(𝑇), 𝛼(1), . . . , 𝛼(𝑇), �̃�(1), . . . , �̃�(𝑇), �̃�(1), . . . , �̃�(𝑇). 

 

The estimators of MSEPBurr parameter are computed from output in Algorithm 2. They are 

           𝑣 =
∑ 𝑣(𝑡)
𝑇
𝑡

𝑇
, �̂� =

∑ 𝛼(𝑡)
𝑇
𝑡

𝑇
, ,

~

~̂
)(

T

T

t

t
=



 �̂̃� =
∑ �̃�(𝑡)
𝑇
𝑡

𝑇
,  

respectively.  

5. Simulation Study 
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We do a simulation study to investigate the performance of the MSEPBurr distri-bution when 

it is applied to regression modeling. This simulation is started by ge-nerating data y and x which 

has a linear relationship as follows 

 �̃�𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀�̃�, 𝑖 = 1,2, . . . , 𝑛, (29) 

where n is the number of observations, 𝛽0 was set to 1, 𝛽1 was set to 2, and 𝜀�̃� follows  

MSEPBurr(0.8,10,0,1) that represents right-skew data.  There are 4 generated numbers of data 

(n), i.e.: 10, 30, 100, and 1000. Moreover, the generating simulated data is repeated in 10 

iterations. 

 

We define 4 regression models for each data simulation. These models are 

• Model 1 is a simple linear regression with errors follow the Normal distribution, 

• Model 2 is a simple linear regression with errors follow the MSNBurr distribution, 

• Model 3 is a simple linear regression with errors follow the MSTBurr distribution, 

• Model 4 is a simple linear regression with errors follow the MSEPBurr distribution. 

Next, the model parameters in each generated data are estimated by using a Bayesian approach. 

Each prior of 𝛽0 and 𝛽1 is Normal(0,0.1). In Model 1, the prior of the pre-cision parameter (𝜏) 
follows Gamma(1,1). The prior of the parameter 𝛼 and �̃� in Maudel 2, Model 3, and Model 4 

follow GSBeta(1,0.1,15) and Inverse-gamma(1,1), respectively. The prior of the shape 

parameter 𝑣° in Model 3 follows Uniform(1,100). The prior of the shape parameter 𝑣 in Model 

4 follows GSBeta(1,-0.99,1). In addi-tion, the performance of each model is compared using its 

Deviance Information Cri-teria (DIC) (Spiegelhalter et al., 2002; Spiegelhalter et al., 2014). 

Carlin and Louis (2008) stated that when the DIC differences lies between 3 and 5, usually 

could be considered the smallest DIC is a better model. The difference between DIC of each 

model is denoted by  

 𝛥𝐷𝐼𝐶4𝑘 = 𝐷𝐼𝐶4 − 𝐷𝐼𝐶𝑘,  

where 𝐷𝐼𝐶4 is DIC of Model 4 and 𝐷𝐼𝐶𝑘 is DIC of Model k, k=1, 2, 3. When |𝛥𝐷𝐼𝐶4𝑘| ≤ 3 

then there is no evidence that Model 4 is better than Model k. If 𝛥𝐷𝐼𝐶4𝑘 > 3, the performance 

of Model k can be considered better than the Model 4. Otherwise, if 𝛥𝐷𝐼𝐶4𝑘 < −3, the 

performance of Model 4 is considered better than Model k. 

 

 

 

(a) n=10 (b) n=30 
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(c) n=100 (d) n=1000 

Figure 4. 𝜟𝑫𝑰𝑪𝟒𝒌where k=1,2,3 in scenario 2 (a) n=10, (b) n=30, (c) n=100, (d) n=1000 

 

The comparison of each model performance based on simulation data is presented in Figure 4. 

Two horizontal lines in the middle of these figures are created as 𝛥𝐷𝐼𝐶 = 3 and 𝛥𝐷𝐼𝐶4 = −3, 

respectively. Figure 4 (a) shows that when n=10, Model 4 outper-forms over other models in 3 

of 10 simulation data. However, Figure 4 (b), (c), and (d) shows that Model 4 has the same 

performance as Model 2 and Model 3. In addi-tion, Figure 4 shows that Model 1 always has the 

lowest performance because of Nor-mal distribution can not handle asymmetric residuals.  

 

6. Application 

 

In this section, the MSEPBurr regression was applied to two real data sets. The MSEPBurr 

distribution was compared to Normal, Student-t, MSNBurr, and MSTBurr distribution. In the 

first example, the regression model was applied using popular “Australian Athletes” data set 

that has been studied by Rubio and Genton (2016).  In the second example, we employ the 

chemical reaction rate in Box and Tiao (1973) that has been analyzed by Albert et al. (1991).  

The DIC was used for model performance comparison. The computation of model parameters 

was also performed using JAGS software that is run using runjags package in R software. The 

posterior samples of each parameter are obtained by 5,000 burn-in in 255,000 iterations. 

Moreover, we used 25 thin to reduce autocorrelation in MCMC output. Using the autorun 

function in this package, the iteration could be automatically added when convergence has not 

been achieved. Furthermore, the convergence of MCMC was checked using potential scale 

reduction factor (PSRF) (Gelman and Rubin, 1992;  Brooks and Gelman, 1997). 

 

6.1 Australian athletes data 

 

The model for the first data is as follows (Rubio and Genton, 2016) 

 𝑦𝑖
∗ = 𝛽1

∗𝑥1𝑖
∗ + 𝛽2

∗𝑥2𝑖
∗ + 𝜀∗𝑖, 𝑖 = 1,2, . . . ,102, (30) 

where ,*

iy 𝑥1𝑖
∗ , and 𝑥2𝑖

∗ , denoted the lean body mass, height, and weight, respectively.  The errors 

on the this model (𝜀𝑖
∗)  are assumed following Normal, Student-t, MSN-Burr, MSTBurr or 

MSEPBurr distribution, respectively. The prior of parameters in this model was specified by 
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vague prior. The prior distributions of  𝛽1
∗and 𝛽2

∗ are assigned to 𝑁𝑜𝑟𝑚𝑎𝑙(0,106). The priors of 

the precision (𝜎−2) in the Normal and Student-t distributions were specified to 

Gamma(0.001,0.001). The scale parameters (𝜎)  in other distributions were set to Inverse-

Gamma(0.001,0.001).  The prior of degrees of freedom (𝑣𝑡) in the Student-t model was 

determined to Uniform(1,50). Other than that, we set the prior of the parameters 𝛼 of  MSNBurr, 

MSTBurr, and MSEPBurr model as GSBeta(1,0,10)  and the prior of  the parameters �̈� in 

MSTBurr model and �̈� in MSEPBurr model were set to Uniform(1,50) and GSBeta(1,-0.9,1) 

respectively.  

 

Table 1.  Male Australian Athletes Data: Posterior mean, credible interval (CI),  PSRF, and 

DIC 

 

Parameter 
Errors Distribution 

Normal Student-t MSNBurr MSTBurr MSEPBurr 

𝛽1
∗ Mean 0.077 0.061 0.042 0.042 0.042 

 CI (0.06,0.10) (0.04,0.08) (0.02,0.06) (0.02,0.07) (0.02,0.06) 

  PSRF 1,000 1,000 1.008 1,000 1,004 

𝛽2
∗ Mean 0.732 0.772 0.826 0.826 0.826 

 CI (0.69,0.78) (0.73,0.82) (0.77,0.88) (0.77,0.88) (0.77,0.88) 

  PSRF 1,000 1.000 1.006 1,000 1,004 

𝜎 Mean 2.299 1.259 1.486 1.459 1.600 
 CI (1.99,2.62) (0.90,1.64) (1.19,1.78) (1.17,1.75) (0.92,2.56) 

  PSRF 1.000 1.000 1.000 1.000 1.000 

 

 

Tabel 1. (continued) 

𝑣𝑡 Mean - 2.517 - - - 

 CI - (1.20,4.20) - - - 

 PSRF - 1.000 - - - 

�̈� Mean -  -  -  25.516-  
 CI - - - (2.81,49.16) - 

  PSRF  - -  - 1.000 - 

v Mean - -  - - -0.002 

 CI - - - - 
(-

0.98,0.90) 

  PSRF - -  - - 1.000 

𝛼 Mean  -   -  0.224 0.224 0.224 
 CI - - (0.06,0.4) (0.07,0.4) (0.07,0.40) 

  PSRF  -   - 1.001 1.000 1.003 

DIC  461,979 438,665 430,301 430,769 430,432 

 

The posterior mean, credible interval (CI), PSRF, and the DIC based on the male Australian 

athletes data are shown in Table 1. The PSRF of all parameters are 1. It is shown that the MCMC 

output is convergence. The DIC of the Normal model is largest that it indicates Normal model 
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have lowest performance. The DIC of the Student-t model show that the Student-t model is 

better than the Normal model. However, both distributions have higher DIC than those of 

MSNBurr, MSTBurr and MSEPBurr models, which the last three have almost similar DIC. This 

result indicates that MSNBurr, MSTBurr and MSEPBurr models are better than Normal and 

Student-t models to capture the pattern of male Australian athletes’ data into a linear regression 

model. It is because the skewness parameters of their error distributions (𝛼) are less than one, 

which cannot be accommodated by Normal and Student-t. 

 

6.2 Chemical reaction rate data 

 

The second data is modeled by the Box and Tiao formula (Box and Tiao, 1973) 

 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖, 𝑖 = 1,2, . . . ,20, (31) 

where  

,log ii Ly = 𝛽0 = 𝑙𝑜𝑔𝐴 −
𝐸

𝑆
�̄�−1, ,

000,50
1

S

E
= 𝑥𝑖 = (𝑇𝑖

−1 − �̄�−1) × 50,000, 

𝐿𝑖 = 𝑙𝑜𝑔 𝐴 −
𝐸

𝑆

1

𝑇𝑖
, and �̄�−1 = ∑ 𝑇𝑖

−1,20
𝑖=1  

where S is the known gas constant, T  is the temperature, and A and  E  is a constant to be 

estimated.  The errors in  this model  (𝜀𝑖) are  also  assumed following Normal, Student-t, 

MSNBurr, MSTBurr or MSEPBurr distribution, respectively. We specified prior of these 

model parameters as vague prior. These priors are the same as the priors in the first example. 

 

 

Table 2. Chemical Reaction Data Rate: Posterior mean, credible interval,  PSRF, and 

DIC 

Parameter 
Errors Distribution 

MSEPBurr Student-t MSNBurr MSTBurr MSEPBurr 

𝛽0 Mean -3.910 -3.994 -4.005 -4.005 -4.005 

 CI (-4.12,-3.68) (-4.08,-3.91) (-4.16,-3.87) (-4.15,-3.86) (-4.15,-3.86) 

  PSRF 1.000 1.001 1.000 1.000 1.000 

𝛽1 Mean -0.115 -0.196 -0.176 -0.176  -0.175  

 CI (-0.21,-0.02) (-0.24,-0.15) (-0.24,-0.11) (-0.24,-0.10) (-0.24,-0.10) 

  PSRF 1.001 1.003 1.000 1.000 1.000 

𝜎 Mean 0.440 0.139 0.298 0.292 0.322 

 CI (0.30,0.60) (0.05,0.31) (0.18,0.43) (0.18,0.43) (0.14,0.55) 

  PSRF 1.000 1.001 1.000 1.000 1.000 

𝑣𝑡 Mean - 2.497 - - - 

 CI - (1.00,4.90) - - - 

  PSRF - 1.009 - - - 

�̈� Mean - - - 25.543 - 

 CI - - - (2.31,48.81) - 

  PSRF - - - 1.000 - 

V Mean - - - - 0.008 

 CI - - - - (-0.90,0.99) 
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  PSRF - - - - 1.000 

𝛼 Mean - - 6.577 6.558 6.546 

 CI - - (2.59,10) (2.60,10) (2.56,10) 

  PSRF - - 1.000 1.000 1.000 

DIC  26.796 13.903 18.919 18.852 18.889 

 

Table 2 shows that the MCMC samples are converging on all parameters because their PSRF 

value is 1. It also shows that MSNBurr, MSTBurr and MSEPBurr have skewness parameter 

𝛼 > 1. This parameter  means they have a  right-skew residuals. In addition, Student-t model 

have a degree of freedom 𝑣𝑡 = 0 which it shows long tail residuals. Based on the DIC value, 

the Normal model seem have lowest performance in chemical reaction rate data. The MSNBurr, 

MSTBurr and MSEPBurr models have similar performance and they outperform Normal 

model. However, their performance is less than the Student-t model because their skewness can 

not well capture the long right tail.  

 

7. Conclusion 

 

This paper has presented MSEPBurr distribution as a general form of MSNBurr distribution. 

We also have studied the properties of this distribution. The mean and variance of MSEPBurr 

are affected by v parameter, but not for the skewness and kurtosis which they are only influenced 

by the 𝛼 parameter. The simulation study showed that the MSEPBurr has better performance in 

some data, but in general, the performances of MSEPBurr, MSNBurr, and MSTBurr are almost 

the same. The MSEPBurr, MSNBurr, and MSTBurr models have similar performance when 

they are applied to male Australian athletes data and chemical reaction rate data. The 

MSEPBurr, MSNBurr and MSTBurr models outperform Normal and Student-t models in 

Australian athletes data because they perfectly accommodate left skew residuals. However, 

performance of MSEPBurr, MSNBurr and MSTBurr  is lower than Stu-dent-t  model in 

chemical reaction rate data because their skewness are not perfectly accommodate long right 

tail.  
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