2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

Flow-Aware Vertex Protection Strategy on Large
Social Networks

Arie Wahyu Wijayanto
Department of Computer Science, School of Computing
Tokyo Institute of Technology
ariewahyu @net.c.titech.ac.jp

Abstract—Given a large graph, such as social network, how to
determine set of vertices should we protect given the k£ budget
such that the percentage of vertices that remain uninfected at
the end of infection propagation is maximized? Considering the
intricacy of this problem and the requirement of scalability,
the existing methods are not scalable. On the other hand, the
connections among vertices in many real world contagions are
usually not solely binary entities (either present or not) but
have associated magnitudes and directions. We formulate the
flow-aware vertex protection (FAVP) problem to elaborate more
efficient and realistic way to prevent infection spreading in
graphs by protecting a set of vertices. We also demonstrate
that the FAVP problem is NP-Hard. Finally, we propose an
efficient and scalable algorithm, called GraphShield by taking
into account the role of infection flow, graph connectivity, and
outdegree centrality. Experimental results on many real network
datasets show that the GraphShield outperforms the state-of-the-
art algorithms regarding both effectiveness and efficiency.

Index Terms—network analysis, graph mining, large graph

I. INTRODUCTION

Inhibiting infection spreading is an important concern in
many different real-world network application. For example,
in the presence of fake news (or rumor, or spam) spreading in
a social network which units should we protect to prevent a
further spreading? How to find the best approach to determine
which set of network units should we protect to make the
network more robust against the random spreading failures
(or viruses, or diseases)? These problems have already known
as vertex protection problem in a network [[1]]-[4].

The structure of networks dictates how quickly the in-
fection will propagate. We exploit this benefit to determine
specific vertices for protection strategy, such that the infection
spreading is considerably diminished. There are traditional
approaches of node importance in graphs such as degree
centrality [5], PageRank centrality [|6], closeness centrality [[7]],
etc. However, they are not designed specifically for infection
spreading case [1]], [S]. Thus, there is no special attention
to scalability, which could lead to difficult implementation in
large graphs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASONAM ’17, July 31 - August 03, 2017, Sydney, Australia

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4993-2/17/07/$15.00
http://dx.doi.org/10.1145/3110025.3110033

58

Tsuyoshi Murata
Department of Computer Science, School of Computing
Tokyo Institute of Technology

Typical vertex protection problem Flow-aware vertex protection problem

Figure 1: Problem representation. The arrow in the right
image indicates followed by, while the magnitude represents
the probability of getting influenced or infected due to their
frequency of interaction, filtering status, etc. Red and green
nodes have the same degree of connection but have different
possibility to infect their connected counterparts.

Existing recent methods in vertex protection problem have
mostly concentrated on a general yet simplified presumption
and ignored the role of degree centrality [1]], [2]], [4]. Chen
et al. [[1]] investigated this problem using the elaboration of
matrix perturbation theory and proposed the near-optimal sub-
modular algorithms called NetShield and NetShield+. They
presented the utilization of perturbed matrix characteristics to
define a sub-modular protection measurement of a particular
set of vertices. They noticed that the largest eigenvalue repre-
sents the connectivity and vulnerability of a particular graph.
Thus, the set of vertices having a maximum drop in eigenvalue
regarding their deletion from the graph, have more likely to
be protected.

However, ignoring the direction and flow of infection in
graphs as in [1], [2]] could also be inaccurate. Figure 1 illus-
trates this issue. Therefore, in this paper, we are focusing on
the effect of graph connectivity and infection flow to control
the infection spreading process. Thus, we can determine which
set of vertices that we should protect.

In social media such as Facebook, the relationships of users
are often directed and have a particular amount of magnitude
to influence their related counterparts [§]. In terms of spread-
ing rumors or hoaxes, a follower of a user could get infected
if the user he/she followed is posting fake news. Suppose that
node d is followed by node b. This connection is represented
as edge b — d. The magnitude of the connection also plays an
important role, while the probability of a particular user post
to appear in their follower timeline is not same. It depends on
their interaction activities such as the number of comments

mailto:permissions@acm.org
http://dx.doi.org/10.1145/3110025.3110033

2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

Table I: Terms and Symbols

Definition and Description

graph G with the vertex set V' and the edge set £
adjacency matrix of graph G

the ith row and jth column element of A

the ith row element of adjacency matrix A

the jth column element of adjacency matrix A
number of vertices in the graph

number of edges in the graph

largest eigenvalue of adjacency matrix A
corresponding eigenvector of A

deg™(i,§) outdegree of edge connecting vertex i and j
w(t, 7) weight of edge connecting vertex 7 and j
outd(i) weighted outdegree of vertex 4

PS(i) Protection Score of node ¢

I5] infection rate

) recovery rate

10} number of initial infected nodes in a graph
0 survival nodes percentage of graph

and likes [8]]. As an illustration, the magnitude of edge b — d
is lower than edge g — d for the reason that user b give more
comments and likes to user d status which then increases their
interaction activities. In this case, if user d post a rumor or
fake news, user b have a higher probability to be infected than
user g. In this case, being infected means that user b also posts

or shares the rumor or fake news from user d.

The main contributions of our paper can be summarized as
the following three points:

1. Problem Formulation: We formulate the Flow-Aware
Vertex Protection problem, which considers the magnitude
and infection flow of the large scale graphs arising from
social media and epidemiology. This problem elaborates the
directionality and weight of connection and their effects to
infection flow of failure networks, which has been ignored by
previous recent studies as in [[I]-[4]. We introduce that the
problem is NP-Hard and show its definition which have not
been comprehensively studied before.

2. Efficient Algorithm: We develop an efficient, scalable
algorithms for the problem, called GraphShield. Due to the
complexity of FAVP problem that is hard to approximate
within absolute error, we find that GraphShield is scalable for
large graphs and gives effective protection compare with other
popular methods. The algorithm utilizes the concept of graph
connectivity from the largest eigenvalue and considering the
flow of infection and outdegree centrality, then allocate selec-
tive priority on vertices regarding their weighted connection.

3. Extensive Evaluations: We perform comprehensive ex-
perimental simulation on multiple real network datasets to
demonstrate its effectiveness and efficiency. Our proposed
algorithms outperform several other existing methods, such
as NetShield, NetShield+, Degree, PageRank, SubGraph, etc.

II. RELATED WORKS

Influence Maximization. The vertex protection problem and
the influence maximization share the similar goal to find
a set of vertices to control the influence propagate in the
network. Kempe et al. have widely known for their work
which firstly establishes the study in this field [9-[11].
However, they are different with each other regarding the
process [1]]. The influence maximization select set of vertices

59

(b) Calculating weighted
outdegree

(d) Final selection after cal-
culating PS

Figure 2: GraphShield Algorithm. Example of k = 2

(c) Calculating ||

to maximize the infected population [9]], [11]. The vertex
protection tries to minimize the infection spreading. Thus,
our work is also different with theirs as a reaction to prevent
the influence/infection spreading by removing connection of a
certain set of nodes to protect the whole networks. These two

processes could also happen at the same time in a graph.
Importance Measurement of Vertices on Graphs. Various

centrality measurements take an important role in measur-
ing vertex importance on the graph including the closeness
centrality [7]], PageRank [6] and the degree centrality [5].
Most of these methods quantify the score for each individual
vertex, while our work focusing on collective quantification
of k vertices regarding their effect in preventing infection
spreading. Moreover, the centrality measurements are not
specifically designed for protection or immunization objective
[S]-17]. Many of them are also not scalable enough to handling

the large graphs.
To summarize, none of the related works are focused on the

study of flow-aware vertex protection problem and approach
in preventing spreading failures in directed large graphs.

I1I. FLOW-AWARE VERTEX PROTECTION PROBLEM

Consider the input graph in an epidemic network as a
directed graph G = (V, E), vertices can have varied states
(such as Susceptible, Infected, Recovered, etc.) based on the
epidemic model. We consider SIS model in this work [12].
Here we first specify a formal definition of vertex protection
problem as a background motivation for this work; then we
formalize the definition of FAVP problem. Table [I] provides
the main terms and symbols used in this paper.

Definition 1. Vertex Protection Problem

Let G (V,E) be a large un-directed un-weighted
connected graph as an input with n vertices, SIS propagation
model and a budget k. We define 0 to be the percentage
of vertices that remain uninfected at the end of infection
propagation. Our goal is to find S, a subset of k vertices such

2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

that 6 is maximized. We get a new graph G'®) with adjacency
matrix A by removing coresponding edges of S from G.

Definition 2. FAVP Problem

Given G = (V| E), a large directed weighted connected
graph with adjacency matrix A, budget k, SIS propagation
model with propagation probability B and curing probability
0. We consider X\ and p to be the largest eigenvalue of A and
its corresponding eigenvector as the connectivity measurement
of nodes in the graph. We also consider deg™ and w as
outdegree and weight of edges as the possibility of infection
flow. We define PS as the necessity of certain subset of
vertices to be protected considering the connectivity and flow
of infection. Our goal is to find S, a subset of k vertices
with the highest PS among all possible subsets so that 0 is
maximized.

Theorem 1. FAVP Problem is NP-Hard.

Proof. Zhang et al. [2] has presented that Data-Aware Vac-
cination (DAV) problem is NP-Hard by reducing Minimum
K-Union (MinKU) set problem [13]] which was proven to be
hard. We can reduce the MinKU problem to an instance of
FAVP problem with § = 1 and 5 = 1, given that MinKU has
instance a set S where S; C V and positif integer k. Hence,
the FAVP problem under SIS propagation model for any given
¢ and S is also NP-Hard. O

IV. GRAPHSHIELD METHOD
A. Intuition

Many literatures state that the largest eigenvalue A of a
graph G also represent the capacity of the graph in terms of
loop capacity and path capacity [1f], [14]]. The larger A of the
graph, the better graph connected [1]]. Van Dam et al. [15]
and Wang et al. [[14]] also show that the smaller the largest
eigenvalue)\, the larger the robustness of a network during
infection propagation.

In infection spreading modeling, there is a critical state that
infection spreading becomes endemic, which is called epi-
demic threshold [2]. Wang et al. demonstrated the prediction
of this state using the largest eigenvalue since the threshold
relies upon the structure of the graph [14].

B. GraphShield Algorithm

To protect the best set of vertices during infection spreading,
we consider a metric for each node representing its necessity
to be protected. The higher score of the metric, the higher
importance of the node to be selected in the protection scheme.

We consider criteria to develop this metric, namely the

Protection Score (P.S), which can be summarized as follows:
The connectivity and vulnerability. As we already pro-

vided the main characteristic of the largest eigenvalue (\) of

a graph, we set its corresponding eigenvectors (1) as variables.
The outdegree centrality. The role of degree centrality

in networks has been discussed in many studies [5[, [16].
There are many advantage of prioritizing the high degree
vertices among the other [5]. In this work, we incorporate the
benefit of this centralization to our method and modify it to be
inline with infection spreading process. Thus, we consider the
weighted outdegree (outd), the number of ties that the vertex

60

Algorithm 1: GraphShield
Data: Graph G = (V, E)
Input: the adjacency matrix A and an integer k
Output: a set S of k vertices

1 Let D be the degree matrix of A;

2 Compute the largest eigenvalue A\ of A;

3 Let u be the corresponding eigenvector of A where
w(@) (i =1,...,n);

4 Compute the outdegree of A;

Let outd(¢) be the vector element of weighted
outdegree for i = 1,...,n;

6 Initialize S to be empty;

7 begin

8

9

wm

for i + 1 to n do
if outd(i) <> 0 then

10 | PS(i) |u(i)outd(i)|;
11 else
12 | PS(i) + 0;
13 end
14 for iter =1 to k do
15 | Let j < argmaz; PS(i), add j to set S;
16 end
17 return S
18 end

are able to infect their neighbors with respect to the weight of
edges among them. Regard to undirected graph, this outdegree
is simply turns into degree centrality, counting the number of
neighbors that a certain vertex can infects.

The flow of infection. Outdegree metric (deg™) repre-
sents the possibility of certain infected nodes to infect their
neighbors. In the case of infection spreading, this metric is
highly associated with how to control and prevent cascading
infection. We use the weighted outdegree (outd) in this work.
In undirected case, we can consider the edges as having
indegree and outdegree as well.

The Protection Score (PS) can be formulized as:

PS(i) {O,if outd(i) = 0 "

> icy lu(i)outd(i)], otherwise

Algorithm provides the detail of our proposed
GraphShield. It provides a set S of k vertices as the output and
requires the adjacency matrix A and an integer k as the input.
We compute the largest eigenvalue (\) and its corresponding
eigenvectors (1) from matrix A. We assign P.S value of each
vertice in step 8-13. Note that in step 11-12 we assign zero
value if the outdegree is equal to zero. Figure [2] gives the
example of selecting a set of vertices from a certain graph.

Here we will also compare our proposed GraphShield with
NetShield by Chen et al. [[1]]. NetShield utilizes a metric, called
Shield-value (Sv) which defined as:

So(8) = S 20m0)? — 3 Al H)ul)n()

i€S i,jES

(@)

There are some main critical differences of our approach
and NetShield [1]]. First, NetShield ignores the role of weight
and direction in the development of protection metric, called

2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

Shield-Value. Second, NetShield ignores the importance of
degree centrality. We assume that both of graph connectivity
(represented by the largest eigenvalue) and degree centrality
plays an essential role in controlling the failure propagation.
Hence, we combine the advantages of degree centrality and
connectivity to determine the set of k vertices. Third, Net-
Shield tends to select the set of k vertices which diverse among
themselves by avoiding the adjacent vertices to be selected
together. Notice that the set of highest degree vertices is not
always the highest pu, vice versa [1f]. In addition, Newman
demonstrates the existence of degree-correlation among adja-
cent vertices in real-world networks [17]. Thus, we assume
that as long as the adjacent vertices have high outdegree
centrality, which also means they have the probability of
infecting lots of their neighbors, those adjacent vertices can
also be selected.

Reproducibility. For the repeatability of simulation results,
we make the proposed GraphShield code available onlin

Here we will provide the analysis of GraphShield algorithm
in terms of computational complexity and cost of space. We
analyze the efficiency based on Chen et al. [1] as a benchmark.

Computational Complexity. The cost of step 2 in Algo-
rithm (1| is O(m) using the power method, while we know
that the cost of step 1,3,5, and 6 are constant. Steps 8-13 cost
O(n). For steps 14-16, its cost is O(k).

cost(GraphShield) = O(m) + O(n) + O(k)

=0(n+m+k) ®)

Cost of Space. The space cost of steps 1-5 in Algorithm
are O(n+m+ 1) : O(m) for storing the graph, O(m) for
storing the degree matrix, O(n + m) for running the eigen-
decomposition algorithm, O(1) for storing A, O(n) for storing
i, and O(n) for storing the weighted outdegree (outd). The
cost for step 6 is O(1). The space cost of steps 8-13 is O(n)
which re-usable during the iteration. Lastly, to store the output
S set of nodes, we need O(k). By ignoring the constant term,
we can summarize that the space cost of Algorithm [T] is

space(GraphShield) = O(n +m + k) 4)

NetShield and NetShield+ as the state-of-the-art algorithm
have computational complexity O(nk? + m) and O(mk/b+
nkb) respectively [1]. b in NetShield+ is a batch size. Instead
of selecting all the %k vertices in one round, NetShield+ picks
b vertices for current graph at each iteration, and then use
the updated graph for next iteration until all & vertices are
selected. The NetShield and NetShield+ have the same cost
of space, O(n + m + k). Thus, our proposed method has less
computational complexity and require the same cost of space.
Hence it is faster and more efficient in terms of cost of space.

V. EVALUATIONS

A. Experimental Settings

Datasets. We run our experiments on various real network
datasets. Our approaches are naturally able to generalize in
undirected case by assuming the bidirectionality of the edges.

Uhttp://bit.ly/GraphShield

61

Table II: Dataset

Name #nodes #edges
Undirected Unweighted
Karate 34 152
Contiguous 49 107
Dolphins 62 159
EuroRoad 1,174 1,417
Facebook Ego 2,8888 2,981
Oregon 13,947 30,584
DBLP Coauthorship 317,080 1,049,866
Directed Unweighted
Moreno-Hens 32 496
DBLP Citation 12,591 49,743
Cora Citation 23,166 91,500
GooglePlus Ego 23,628 39,242
Twitter Lists 23,370 33,101
Digg Friends 279,630 1,731,653
Citeseer Citation 384,413 1,751,463
Yahoo Advertisers 653,260 2,931,708
Directed Weighted
Moreno-Rhesus 16 111
Moreno-Cattles 28 217
Moreno-Sheep 28 250
Moreno-Highschool 70 316
NeuralNetwork 297 2,345
US Airports 1,574 28,236

Therefore three types of cases are provided: undirected un-
weighted, directed unweighted and directed weighted graphs
as summarized in Table [lLIl All the dataset could be accessed
at [[18]], except the Neural Network [19]] and the Oregon [1].

Parameters. For effectiveness evaluation, we use the same
parameters for all methods: 5 = 0.9 and 6 = 0.6, as used
in [2l; & = 20% for smaller datasets (less than 200 vertices),
k = 10% for larger datasets, and ¢ = k as suggested by [1].
We perform random initialization to determine the infected
nodes in each simulation. On each dataset, we conduct 100
times of simulations and take the average. As for efficiency
evaluations, various budget k value are used. For NetShield+,
we use the batch size = 2.

Evaluation Metric. We compare the protection effective-
ness result of all methods using a survival nodes percentage
(6). To measure the efficiency, we compare computational time
for various value of the budget k on large graphs.

Comparison Methods. We compare our proposed method
with popular methods: Degree centrality [5]], PageRank [6],
EigenVector [5[], SubGraph [5]], KCoreness [3], Closeness [7]],
Greedy [1]], and also including the state-of-the-art methods:
NetShield and NetShield+ [1].

B. Effectiveness Evaluation

We simulate the methods on random attack and provide
average after 100 simulations. Table shows that our
GraphShield outperforms the other methods regarding the
highest average of survival nodes percentage (6) at the end of
propagation after 100 timesteps. GraphShield also performs
well in undirected graphs by assuming the bi-directionality of
edges and threat the outdegree parameter in the P.S score as
a degree centrality. Hence, it combines the role of degree cen-
trality and largest eigenvalue. In the directed graphs (Moreno-
Hens) and directed weighted graphs (Neural Network, US

2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

= = =GraphShield

----- NetShield

—Degree

= PageRank

= EigenVector
SubGraph

——Kcoreness

= Acquaintance

Running time (seconds)

. =—Greedy

[1] 10 20 30

Budget of protected vertices (k)

Figure 3: Efficiency Evaluation. Running time comparison
on Karate dataset.

Airport, and Moreno-Highschool), the GraphShield are able
to tackle the infection flow limitation of the current state-of-
the-art methods: NetShield and NetShield+.

C. Efficiency Evaluation

Here we evaluate the running time of the proposed methods.
All of the experiments are done on the same machine with
Intel Core i7-3770 CPU @ 3.40GHz and 8 GB memory,
running Ubuntu 16.04. Figure [3] shows that for different
budget k, GraphShield takes less running time than the other
methods. Notice that NetShield+ is not displayed here due to
its long running time, which will be evaluated in Figure [4] In
addition, the NetShield is faster than other methods, except
GraphShield, which reconfirm its efficiency as in [1].

Next, we will show the performance of GraphShield against
the current state-of-the-art methods, NetShield and NetShield+
[1] on large graphs. Here we only provide the evaluation on
larger graphs. Figure [] shows the running time superiority of
GraphShield over the NetShield+. Moreover, from each left
charts in Figure f] the proposed GraphShield is also faster
than the NetShield. NetShield+ performs not so good on large
graphs due to its batching processes.

VI. DISCUSSIONS

As the connection of large social networks is not merely
binary entities, flow-aware protection problem representation
is required. The limitation of our approach might appear from
ignoring the role of in.degree, which may essentially take
part in the imploding case of the graph structure. The case
of undirected graphs can be handled by assuming the bi-
directionality of edges. On the other hand, the existence of
self-loop is ignored in our work due to its limited effect on
neighborhood infection process. In the case of there exist the
multiple edges among vertices, we treat them as a weight of
edges and combine them into a single edge. However, this
treatment can only be done on multiple edges in directed
unweighted graphs. Thus, the further appropriate treatment
for multiple edges in directed weighted graphs should be more
evaluated. Regard to various targetted attack on graphs, instead
of random attack as evaluated in this paper, is still not yet
elaborated in our work, as well as in many current studies.
All of these issues can be a good direction in the future.

VII. CONCLUSIONS

In this paper, we have addressed the problem of protecting
set of vertices to prevent failure propagation process. We

62

Table III: Effectiveness Evaluation

Facebook Ego Neural Network

Method Average Std.Dev. Average Std.Dev.
Degree 88.17 8.43 70.79 0.32
PageRank 89.78 8.06 70.72 0.31
EigenVector 89.44 7.77 70.74 0.37
SubGraph 89.03 7.43 70.71 0.38
Kcoreness 88.04 7.91 70.78 0.34
Greedy 89.66 8.11 70.82 0.32
NetShield 88.58 7.29 70.72 0.32
NetShield+ 88.86 7.77 70.74 0.31
GraphShield 90.59 7.79 70.86 0.34
Dolphins US Airports
Method Average Std.Dev. Average Std.Dev.
Degree 85.92 2.00 73.19 0.13
PageRank 86.39 243 73.19 0.12
EigenVector 86.16 2.16 73.19 0.14
SubGraph 86.18 2.44 73.22 0.14
Kcoreness 86.34 241 73.21 0.13
Greedy 86.11 2.29 73.21 0.15
NetShield 85.81 2.05 73.19 0.13
NetShield+ 86.03 2.54 73.15 0.15
GraphShield 86.85 2.39 73.26 0.15
Contiguous EuroRoad
Method Average Std.Dev. Average Std.Dev.
Degree 88.14 3.57 69.24 0.48
PageRank 87.69 3.17 69.40 0.53
EigenVector 88.37 3.35 69.29 0.55
SubGraph 88.31 3.28 69.33 0.49
Kcoreness 87.98 3.86 69.33 0.51
Greedy 87.92 3.69 69.30 0.50
NetShield 87.69 3.52 69.28 0.52
NetShield+ 88.02 3.52 69.32 0.49
GraphShield 89.14 3.95 69.51 0.55
Moreno-Hens Moreno-Highschool
Method Average Std.Dev. Average Std.Dev.
Degree 70.06 1.55 70.40 0.81
PageRank 69.63 1.41 70.49 0.89
EigenVector 69.75 1.47 70.37 0.83
SubGraph 69.75 1.47 70.30 0.74
Kcoreness 69.91 1.52 70.49 0.82
Greedy 70.09 1.55 70.43 0.80
NetShield 69.97 1.53 70.37 0.83
NetShield+ 69.78 1.48 70.54 0.83
GraphShield 70.25 1.57 70.64 0.87
Moreno-Sheep Karate
Method Average Std.Dev. Average Std.Dev
Degree 72.93 2.44 77.47 1.40
PageRank 73.21 2.61 77.38 1.37
EigenVector 73.32 2.56 77.85 2.66
SubGraph 73.18 2.56 77.56 1.43
Kcoreness 73.18 251 77.79 1.47
Greedy 73.25 2.61 77.79 1.47
NetShield 73.25 2.61 77.68 1.45
NetShield+ 73.32 2.61 77.62 1.44
GraphShield 74.79 3.00 78.06 1.47

consider the role of infection flow and graph structures to
formulate the Flow Aware Vertex Protection Problem. We pro-
posed an efficient and scalable algorithm, called GraphShield
to determine set of nodes we should protect given the limited
k budget. Evaluation on various real graph datasets shows that
the GraphShield outperforms the state-of-the-art algorithms in

Running Time (seconds)

2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

0.08
g o007

—Graphshield
—NetShield
—NetShield+

——GraphShield

—NetShield

20 40 60 80
Budget of protected vertices (k)

100 20 40 60 80

Budget of protected vertices (k)

(a) Facebook Ego

~
[

—Graphshield
—NetShield
—NetShield+

——GraphShield

~

—NetShield

-
[

Running Time (seconds)
o
I

o

0 20 40 60 80

Budget of protected vertices (k)

100 0 20 40 60 80

Budget of protected vertices (k)

(c) Digg Friends

——GraphShield
—NetShield
——NetShield+

0

20
Budget of protected vertices (k)

40 60 80 100 0 20

40
Budget of protected vertices (k)

60 80

(e) GooglePlus Ego

100

100

100

120

._
1)
3

80

(SRS
S S o

Running Time (seconds)

o

Running Time (seconds)

w
&
S

>

nd:

Running Time (secol
RN N W
©w o o3& 8
& 38383883

)

~
n

—Graphshield
——NetShield
——NetShield+

~

GraphShield
ENetShie\d

o

-
n

-

Running Time (seconds)
o
&

o

0 20 40 60 80

Budget of protected vertices (k)

100 20 40 60 80

Budgetof protected vertices (k)

100

(b) DBLP Coauthorship

—GraphShield

—NetShield

20 40 60 80
Budget of protected vertices (k)

—Graphshield
—NetShield
——NetShield+

|

Running Time (seconds)
ok MW R oG oe N

0 20 40 60 80

Budget of protected vertices (k)

100

o

100

(d) Citeseer Citation

—Graphshield

—NetShield

—Graphshield
—NetShield
—NetShield+

%

Running Time (seconds)
CrRr MW e DO N ®©

0 20 40 60 80

Budget of protected vertices (k)

100

o

20 40 60 80
Budget of protected vertices (k)

100

(f) Yahoo Advertisers

Figure 4: Running Time Evaluation. Running time (z-axis) versus changing of the budget k (y-axis). In each subfigure,
the left chart shows the running time comparison of GraphShield, NetShield, and NetShield+. The right chart shows only
the comparison of GraphShield and NetShield for a better visualization. GraphShield shows it scalability on large graphs and
performs faster than the current state-of-the-art methods: NetShield and NetShield+. Lower is better.

terms of both effectiveness and efficiency.

ACKNOWLEDGEMENT

This work was supported by Tokyo Tech - Fuji Xerox
Cooperative Research (Project Code KY260195), JSPS Grant-
in-Aid for Scientific Research(B) (Grant Number 17H01785)
and JST CREST (Grant Number JPMJCR1687). A.W.W. also
thanks to Indonesia Endowment Fund for Education (LPDP)
for the educational scholarship.

(1]

[2]

[3]

(4]

[3]
(6]

REFERENCES

C. Chen, H. Tong, B. A. Prakash, C. E. Tsourakakis, T. Eliassi-Rad,
C. Faloutsos, and D. H. Chau, “Node immunization on large graphs:
Theory and algorithms,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 1,
pp. 113-126, Jan 2016.

Y. Zhang and B. A. Prakash, “Dava: Distributing vaccines over networks
under prior information,” in Proceedings of the 2014 SIAM International
Conference on Data Mining. SIAM, 2014, pp. 46-54.

Y. Zhang and B. A. Prakash, “Data-aware vaccine allocation over large
networks,” ACM Trans. Knowl. Discov. Data, vol. 10, no. 2, pp. 20:1-
20:32, Oct. 2015.

Y. Zhang and B. A. Prakash, “Scalable vaccine distribution in large
graphs given uncertain data,” in Proceedings of the 23rd ACM In-
ternational Conference on Conference on Information and Knowledge
Management, ser. CIKM 14. New York, NY, USA: ACM, 2014, pp.
1719-1728.

M. Newman, Networks: An Introduction. New York, NY, USA: Oxford
University Press, Inc., 2010.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank
citation ranking: Bringing order to the web.” Technical Report 1999-
66, November 1999, previous number = SIDL-WP-1999-0120.

63

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
(17]
(18]

[19]

C. Dangalchev, “Residual closeness in networks,” Physica A: Statistical
Mechanics and its Applications, vol. 365, no. 2, pp. 556-564, 2006.
Facebook. (2017) How does news feed decide which stories to show?
[Online]. Available: https://www.facebook.com/help/166738576721085
D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD 03. New York, NY, USA: ACM, 2003, pp. 137-146.
K. Jung, W. Heo, and W. Chen, “Irie: Scalable and robust influence
maximization in social networks,” in 2012 IEEE 12th International
Conference on Data Mining, Dec 2012, pp. 918-923.

P. Shakarian, A. Bhatnagar, A. Aleali, E. Shaabani, and R. Guo, The
Independent Cascade and Linear Threshold Models. Cham: Springer
International Publishing, 2015, pp. 35-48.

A. Gray, D. Greenhalgh, L. Hu, X. Mao, and J. Pan, “A stochastic
differential equation sis epidemic model,” SIAM Journal on Applied
Mathematics, vol. 71, no. 3, pp. 876-902, 2011.

S. A. Vinterbo, “Privacy: a machine learning view,” IEEE Trans. Knowl.
Data Eng., vol. 16, no. 8, pp. 939-948, Aug 2004.

Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos, “Epidemic spread-
ing in real networks: an eigenvalue viewpoint,” in 22nd International
Symposium on Reliable Distributed Systems, 2003. Proceedings., Oct
2003, pp. 25-34.

E. van Dam and R. Kooij, “The minimal spectral radius of graphs with
a given diameter,” Linear Algebra and its Applications, vol. 423, no. 2,
pp. 408 — 419, 2007.

S. P. Borgatti, “Centrality and network flow,” Social Networks, vol. 27,
no. 1, pp. 55 — 71, 2005.

M. E. J. Newman, “Assortative mixing in networks,” Phys. Rev. Lett.,
vol. 89, p. 208701, Oct 2002.

J. Kunegis, “Konect - the koblenz network collection,” in Proc. Int.
Conf. on World Wide Web Companion, 2013, pp. 1343-1350.

D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks,” Nature, vol. 393, pp. 440—442, 1998.

https://www.facebook.com/help/166738576721085

	Introduction
	Related Works
	Flow-Aware Vertex Protection Problem
	GraphShield Method
	Intuition
	GraphShield Algorithm

	Evaluations
	Experimental Settings
	Effectiveness Evaluation
	Efficiency Evaluation

	Discussions
	Conclusions
	References

