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Abstract—Graph protection strategies aim to suppress the
epidemic propagation in a network by allocating protection
resources to maximize the ratio of surviving node. Research on
this topic has been active and promising due to its wide-range
applications. However, most of the recent developments are
simulated by assuming that the network structure remains static
during epidemics. Moreover, the existing protection schemes
are limited to the simplified pre-emptive and post-emptive
schemes. The pre-emptive scheme protects the most critical
nodes of networks prior to epidemic spreading, behaving as a
prevention mechanism. In post-emptive schemes, the protections
are allocated in the presence of epidemics, when the attacks have
already spread over the network, simulating a late curative
response. Given a limited k resource budget, both of those
schemes spend the whole resources in a single chance. In this
paper, we introduce a novel adaptive protection scheme by
gradually protecting nodes in response to the incoming attacks.
We consider the adaptive scheme in a more challenging network
structure, the dynamic networks. We propose the n-step fitted Q-
learning for training the model under reinforcement approach.
We further incorporate graph embedding as a feature-based
representation of the network state. We also demonstrate the
potential of our proposal as a non-deterministic approach for
this graph protection problem. Experimental results show that
our proposed model effectively restrains epidemic propagation
in real-world network datasets.

Index Terms—graph protection, reinforcement learning, time-
evolving networks, node immunization, dynamic networks

I. INTRODUCTION

Dynamic networks are networks which change over time

by the inclusion and removal of nodes and edges [1], [2].

With the advancement of online social networks such as

Facebook, Twitter, Instagram, etc., dynamic networks have

become an important topic of studies. Capturing the mecha-

nism of information spreading in this dynamic networks is a

challenging task. Furthermore, most social networks have a

highly dynamic nature and evolve rapidly over time.

In graph protection problem, we are given an input network

and a limited k budget of resources. We aim to select nodes

which need protections to maximize the ratio of surviving

nodes during epidemic spreading [3], [4]. Intuitively, we

should focus to localize epidemic spreading by disconnecting

the network. This problem has been studied intensively under

the assumption that the underlying network structure remains

unchanged as the epidemic propagates. However, the graph

protection problem in dynamic networks has received limited

attention due to its more complicated topology.

Among the limited work on dynamic networks, most are

focusing either on the pre-emptive or post-emptive scheme.

The former protects the most critical nodes of networks prior

to an epidemic attack, simulating as prevention efforts [4],

[5]. In the latter scheme, the protections are distributed in

the presence of epidemics, at the point when the attacks have

spread over the network, reenacting as delayed reactions [6]–

[8]. Given a limited k resource budget, both of those schemes

spend entire budget in a solitary shot.

Another challenge in this field is that most of the current

works emphasize deterministic approaches such as degree

centrality, betweenness, connectivity, etc [5], [9], [10]. De-

spite its effectiveness, the deterministic approach constantly

selects critical nodes by one criterion without considering

what is best for a current input network structure. Selecting

the highest degree nodes exclusively could result in protecting

only a particularly dense area of networks. In this paper, we

introduce a novel adaptive protection scheme by gradually

selecting nodes to respond to the new incoming attacks which

changes over time. We propose the n-step fitted Q-learning

for training the model under reinforcement approach. We in-

corporate graph embedding as a feature-based representation

of the network states. We further demonstrate the potential of

reinforcement learning and feature-based representation as a

non-deterministic policy for this problem. In the experimental

evaluation, we show that our proposal effectively restrains

epidemic propagation in real-world networks.

Summary of Contributions. In contrast to most prior

studies, there are four main contributions of our work:

• Dynamic Networks. We omit the simplified assumption

that the underlying network structure remains unchanged

during the epidemic. We evaluate our model to networks

which evolve dynamically over time.

• Adaptive Scheme. Instead of spending all the available

protection budget at a single time point (preceding

or succeeding the epidemic), we propose to gradually

selecting nodes in response to the incoming attack.

• Non-deterministic Policy. Contrary to most existing

works which define a pre-determined protection policy

regardless of the given network structure, we introduce a

non-deterministic policy. Using reinforcement learning,

we introduce the stochasticity to the protection.

• Protection Threshold. We prove the existence of a

protection threshold, when is achieved, no more pro-
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tection resources required as the network is adequately

protected. The protection threshold is equal to the mini-

mum vertex cover nodes which can fully disconnect the

network.

II. PRELIMINARIES

Definition 1. Graph Protection Problem
We are given the input as follows: an undirected connected

graph G = (V,E), SIS propagation model, and a budget k.

We define θ to be the surviving ratio of vertices that remain

uninfected at the end of infection propagation. Our goal is to

find S, a subset of k vertices such that θ is maximized. The

protection is performed by removing corresponding edges of

S from G to get a new graph G(S).

Definition 2. Dynamic Network
Let {1, · · · , T} be a finite set of discrete time steps. Let

V = {1, · · · , n} be a set of individuals. Let Gt = (Vt, Et)
be a graph representing the snapshot of the network at time

t. A dynamic network G = (V,E) is a series 〈G1, · · · , GT 〉
of static networks where each Gt = (Vt, Et) is a snapshot

of individuals and their interactions at time t such that V =⋃
t Vt and E =

⋃
t Et ∪

⋃
t−1(vt, vt+1).

For consistency, the time during which the individuals are

observed is assumed as finite. Following the definition by [11]

and [1], the temporal length of G is assumed to be divided

into discrete steps {1, · · · , T}. The interaction between a pair

of individuals takes place within one time step [11]. The non-

trivial problem of appropriate time discretization is beyond

the scope of our work.

Definition 3. SIS Propagation Model
Susceptible-Infected-Susceptible (SIS) model define that

each node in graph G with N number of nodes would be in

one of the following two states: susceptible and infected. Let

S(t) be the number of susceptible nodes, and let I(t) be the

number of infected individuals at time t. At each timestamp t,
susceptible nodes can be infected by their infected neighbors

with probability β. Also, each infected node can get recovered

to susceptible state with recovery probability δ. This model

can be formalized as nonlinear differential equations:

ds

dt
= −βis, di

dt
= βis− δi, (1)

being s(t) = S(t)/N and i(t) = I(t)/N the respective

proportions of states at time t.
Definition 4. Adaptive Graph Protection Problem on

Dynamic Networks Let G = (V,E) be an undirected

dynamic graph as an input, with a series of a known sample

〈G1, · · · , GT 〉 of snapshots where each Gt = (Vt, Et) rep-

resent a static network at time t. Let k be a given budget

of protection resources and G start at t = T0 to t = Tt.

The protection and attack of epidemic take place alternately

at each time t by turns, while the epidemic propagates to

time t+ 1 under SIS epidemic model continuously until the

end of G. Let us denote S, a subset of k protected nodes

from graph G and θ be the ratio of surviving nodes of graph

G at the end of epidemics. The protection is performed by

removing corresponding edges of S from G to get a new

graph G(S). Under random attack strategies, k nodes are

randomly initialized as infected nodes at each turn such that

k =
∑T

t=1 kt. The goal is to find S ∈ V such that θ is

maximized, subject to the size of S is equal to constraint k,

i.e., calculating the following combinatorial optimization:

S∗ = argmax
S∈V

θG(S)

s.t. |S| = k, k =

T∑

t=1

kt
(2)

III. RELATED WORK

Graph protection strategies have mostly been studied by

assuming the static topologies of network structure. Chen

et al. proposed NetShield [12] and Netshield+ [5] which

use the properties of matrix perturbation to find a set of

nodes in static networks to be pre-emptively protected [12].

Zhang and Prakash [7], [13] developed DAVA and DAVA-

fast, two post-emptive polynomial-time heuristics methods.

NIIP [8] extracts a maximum directed acyclic graph from a

static network then implements a Monte Carlo simulation to

approximate the distribution of k over each time point t given

the probability of a functional node getting infected. Wang

et al. investigated a rumor blocking in static networks by

considering dynamic Ising propagation model which consists

of the individual tendency and global popularity of the rumor

[14]. Under the constraint of user experience utility, they

proposed DRIMUX method to protect a set of nodes in t
time interval to limit the spreading of rumor.

In dynamic networks, VAILDN is introduced as a post-

emptive scheme protection [15]. By merging all infected

nodes into one supernode and building a tree-like structure, it

determines the protected nodes based on each sub-tree benefit

comparison. Prakash et al. proposed five different greedy

algorithms as pre-emptive protection of the dynamic networks

[16]. The methods are based on the pre-defined deterministic

protection policies including the highest degree centrality,

acquaintance and largest eigenvalue of the system matrix. Liu

& Gao investigated a different task of influence blocking in

dynamic email networks [17]. They introduced an adaptive

Autonomy-Oriented Computing which actively propagates

the vaccination patches to counter a virus-embedded email

spreading.

To summarize, none of the existing works investigated the

adaptive scheme of suppressing the epidemic spreading by

graph protection strategies in dynamic networks.

IV. REPROTECT: ADAPTIVE GRAPH PROTECTION

STRATEGY IN DYNAMIC NETWORKS

Our proposal of adaptive graph protection strategy aims to

incrementally protect the selected nodes instead of protecting

them at once. In this scheme, the protection strategy is divided

into several rounds, and each protection round is performed

to block the epidemic attack being spread. In each round, we

are given a snapshot of the current network structure.

In each protection round, we determine the most critical

set of nodes of the current network structure. The main idea

of our learning method will be described in the following key

points:
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(a) Vertex cover (not minimum) (b) Minimum vertex cover

Fig. 1: Vertex covers shown on the same underlying graphs,

where a highlighted node indicates that it is contained in the

cover. Red colored edge indicates the covered edge.

A. Minimum Vertex Cover (MVC)

Given a graph G = (V,E), a vertex cover is a subset of

the vertices Vc ⊆ V such that every edge has at least one of

its side in Vc. Thus, this set of vertices Vc in graph G cover

every edge in G. A minimum vertex cover is a vertex cover

with the smallest possible number of nodes.

Every graph G trivially has a vertex cover where Vc = V .

Figure 1a shows the vertex cover, and Figure 1b shows the

minimum vertex cover for the same graphs. The complexity

of vertex cover problem is NP-complete, and that of the

minimum vertex cover problem is NP-hard.

Theorem 1 (Protection Threshold). The protection threshold
is the minimum required size of S to disconnect graph G
such that no propagation may occur among vertices. Given an
undirected connected graph G = (V,E), a minimum vertex
cover of G is also a protection threshold of G.

Proof: A vertex cover Vc of G is a subset of the vertices

Vc ⊆ V such that (u, v) ∈ E ⇒ u ∈ Vc∨v ∈ Vc. A minimum

vertex cover V ∗c is a Vc with the smallest size as follows:

V ∗c = argmin
Vc

|Vc| (3)

Since all edges in graph G is covered by V ∗c :

(u, v) ∈ E ⇒ u ∈ V ∗c ∨ v ∈ V ∗c , (4)

then by removing all corresponding edges in G connected to

V ∗c we get G(V ∗
c ) = (V ∗c , E

(V ∗
c )). Thus, G(V ∗

c ) has no edge,

i.e., E(V ∗
c ) = {}, |E(V ∗

c )| = 0.

Following Definition 1, protecting the set S of vertices in

G is removing all corresponding edges connected to S from

G. This is a minimax function of minimizing the size S to

get the maximum edges in G covered as follows:

S∗ = argmin
S

| argmax
E(S)

|E(S)|| (5)

Consequently, by protecting minimum vertex cover V ∗c ,

i.e., S = V ∗c , then G(S) has no edge. Hence, a minimum

vertex cover V ∗c of G is also a protection threshold of G.

Next, we will describe how to select protected nodes from

a minimum vertex cover under a limited budget.

B. k Degree Ordered MVC vertices

Let us recall that MVC is a set of vertices without any

requirement of ordering. Intuitively, given k budget, selecting

any k nodes from V ∗c may result in a different set of nodes.

Additionally, not all of the node in MVC should have the

same priority to be protected within a limited budget. We

consider that the more connected a node v to its neighbors in

G, the more critical node v to be protected. Hence, we reorder

Algorithm 1: Training Phase: n-step Fitted Q-Learning

for the Minimum Vertex Cover
Input: adjacency list of graph G
Output: neural network parameter Θ

1 Initialize experience replay memory M to capacity N
2 for episode e = 1, ..., L do
3 Initialize the state to empty S1 = {}
4 for step t = 1, ..., T do

5 vt =

{
random node v ∈ S̄t, w.p.ε

argmaxv∈S̄t Q̂(h(St), v; Θ), otherwise

6 Add vt to partial solution: St+1 = (St, vt)
7 if t ≥ n then
8 Add tuple (St−n, vt−n,Rt−n,t, St) to M

9 Sample random batch from B
iid.∼ M

10 Update Θ by SGD over loss function

(y − Q̂(h(St), vt; Θ))2 for B
11 end
12 end
13 return Θ

MVC nodes using their respective degree value. Under the

constraint of budget k, we get the top k highest degree nodes

of V ∗c .

C. Reinforcement Learning

Here, we will explain how to get the set of minimum vertex

cover from input graph. Despite the protection threshold

guarantee of MVC, finding the MVC nodes of graphs is

NP Hard. We consider a reinforcement learning approach to

approximate the solution. More specifically, we leverage an

n-step fitted Q-Learning [18], [19] to train our model in the

neural network framework.

Training Phase
In the training phase, we iteratively let our model to construct

a vertex cover (Vc) solution of the input network. We define

the RL environment as follows:

• State (S): set of currently selected nodes

• Action (A): add new node v to vertex cover set S

• Reward (R): -1, as our goal is to get the minimum size

of vertex cover, we set a penalty for adding a new node

into Vc set.

• Termination criteria: all edges are covered

Algorithm 1 illustrates our proposed training phase. In each

training iteration, our method return the neural network

parameter Θ which succesfully get Vc from graph G. In line 5,

we specify how to select a new node by balancing exploration

and exploitation. With probability ε, we select a random

node as an exploration effort, otherwise exploit the best

known policy by adding a node which satisfies the evaluation

function Q̂(h(St), v; Θ). h(St) is the representation of state

S in step t. To efficiently train our model, we perform batch

processing as described in line 9.

Evaluation Phase
Algorithm 2 illustrates the evaluation phase of our proposed

method. To get the best model parameter Θ∗, we evaluate

the training result against a set of given graph G available

snapshots. We will use this model parameter in the testing

simulation of adaptive graph protection scheme.
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Algorithm 2: Evaluation Phase: MVC Evaluation

Input: snapshots of graph G, number of training iteration
itert

Output: neural network best parameter Θ∗

1 Initialize Θ∗ = 0 and |Vc| = 0
2 for training i = 1, ..., itert do
3 Load model i, with parameter Θi

4 Get Vc of G using Θi

5 if |Vc|i < |Vc| then
6 Θ∗ = Θi

7 end
8 return Θ∗

Algorithm 3: Testing Phase: Adaptive Graph Protection

Input: current snapshot of graph G, an integer k
Output: a set S of k nodes

1 Initialize S to be empty, S = {}
2 Embed each node in G into d-dimensional feature vector using

Eq. 6 and 7
3 Get set of minimum vertex cover nodes V ∗c (unordered) using

the best model (with parameter Θ∗)
4 Reordered set of V ∗c minimum vertex cover nodes with their

corresponding degree
5 Get S from top k nodes in V ∗c
6 return S

Testing Phase
Algorithm 3 shows the testing phase of adaptive graph

protection scheme in dynamic networks. We are given an

input snapshot of graph G and budget k.

D. Graph Embeddings as Feature-Based Representations

Let us explain our proposal of using graph embeddings

as feature-based representation in our framework. Our main

consideration as follows:

First, as we are handling the dynamic networks and dif-

ferent given input dataset, we have to deal with graphs of

different size and structure. We consider the graph embed-

ding approach as a fixed-length representation. Each node

is represented in a feature-based d-dimensional vector. This

representation enables us to process different graph size and

structure, of which is the natural topologies of dynamic

networks that change over time.

Second, in realistic situations of reinforcement learning, we

may not possibly learn about every single state, especially if

given a large data. There is an excessive number of states to

visit in training and to hold the Q-Tables in memory. Instead,

we aim to let our model generalize by learning from some

small number of training states through experience. Thus, it

can generalize that experience to new, similar situations. The

graph embedding help us to efficiently train our reinforcement

learning model.

We will leverage a neural network architecture over graphs,

in particular, Structure2Vec [19], [20], to embed the network

state. This graph embedding network will compute a d-

dimensional feature embedding μv for each node v ∈ V ,

given the current partial solution S.

To represent each node v, we construct a d-dimensional

embedding μv . Given a graph G = (V,E), we initialize

μ
(0)
v = 0, and for every v ∈ V we update it iteratively in

T iterations as follows:

μ(t+1)
v =

ReLU (ϑ1xv + ϑ2

∑

u∈N(v)

μ(t)
u + ϑ3

∑

u∈N(v)

ReLU (ϑ4w(u, v))),

(6)

with xv is node v own tag, whether being already selected

or not not. Selected node will be given tag = 1. Otherwise

0.
∑

u∈N(v) μ
(t)
u is the feature of node v neighbors. w(u, v)

is the neighbors’ edge weight, to consider the weighted

connection in weighted graph. While ϑ1, ϑ2, ϑ3, and ϑ4 are

the model parameters and ReLU is the rectifier linear unit

activation function.

Here we will explain how to get the evaluation function

Q̂(h(St), v; Θ) of training phase shown in Algorithm 1. Once

the embedding μv for each node v ∈ V is calculated using

Eq.6 after T iteration, we get μ
(T )
v . The pooled embedding

of the entire graph G is then given by
∑

u∈V
μ(T )
u (7)

Then we can use it to estimate the evaluation function as

follows:

Q̂(h(S), v; Θ) = ϑ�5 ReLU (concat (ϑ6

∑

u∈V
μ(T )
u , ϑ7μ

(T )
v )),

(8)

being
∑

u∈V μ
(T )
u is the pooled embedding of the entire

graph. ϑ5, ϑ6, and ϑ7 are the neural network model parame-

ters.

The evaluation function Q̂(h(S), v) depends on the collec-

tion of seven parameters Θ = {ϑi}7i=1 which is learned by

training in Algorithm 1 and evaluated in Algorithm 2.

V. EXPERIMENTAL RESULTS

A. Dataset

We evaluate our proposed methods on various real-world

dynamic network datasets, which summarized in Table I.

TABLE I: Statistics of Dynamic Network Dataset

Name #nodes #edges timespan snapshot

Infectious [21] 410 17,298 1 hour 8
Hypertext 2009 [22] 113 20,818 12 hours 6
Hospital [23] 75 32,424 1 day 5
PrimarySchool [24] 242 125,773 1 hour 18
Email [25] 986 332,334 30 days 19

B. Comparison Methods

Recall that to the best of our knowledge, there is no

previous work has been proposed to handle the adaptive

scheme dynamic graph protection problem. Here we compare

the performance of the following methods:

• None: simulates the condition without any protection.

• Random: gives protection to k uniformly random func-

tional nodes.
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• GreedyMVC: approximates the set of MVC nodes of the

input graph by greedily selects the uncovered edge with

the maximum sum of degrees of its endpoints [19]. Then

protects k nodes from this unordered MVC set.

• Degree: selects k highest degree nodes of the current

snapshot of the dynamic network at the protection turn.

• ReProtect: our proposed method as described in Algo-

rithm 1 and 2, trained on each available snapshot of

dynamic networks. The name is abbreviated from the

Reinforcement Learning-based Protection strategy.

• ReProtect-p: our proposed method trained on the per-

turbed graph of each available snapshot of dynamic net-

works. The perturbation is performed by probabilistically

removing edges from the snapshot graph. Specifically,

for each edge, if the edge weight is smaller than the

generated random number, the edge will be removed.

We introduce this version to provide more training data

variety.

C. Evaluation Criteria

We measure the protection effectiveness result using the

surviving ratio (θ) of nodes in dynamic network G at the end

of epidemics.

D. Experimental Setting

In the training phase, we use the embedding dimension size

64, batch size 64, embedding iteration 5, n step 5, learning

rate 0.0001 and number of training iteration 100,000. For

the evaluation phase, we consider the number of evaluation

iteration as 100.

For a fair comparison, all of the comparison methods

are simulated under the same setting as follows: infection

probability β = 0.8, recovery probability δ = 0.2, and the

initial number of attacked nodes = k. We employ the random

attack strategies. Finally, all of the experiments are performed

on the same machine, Ubuntu 16.06 LTS PC with an Intel(R)

Core(TM) i9-7900X CPU @ 3.30GHz CPU and NVIDIA

GTX 1080 Ti SLI GPU.

E. Effectiveness Evaluation

On real-world networks, we compare the performance of all

comparison methods on five different datasets. Table II shows

the result of surviving nodes ration on SIS epidemic model.

The results are averaged from 100 simulations under the con-

straint of budget k = 0.15N , with N is the number of nodes

in the input graph. Both of our proposed methods consistently

reach the highest ratio of surviving nodes. Additionally, the

proposed methods with more training data variety using the

perturbed graph, namely ReProtect-p achieves a better result

than the regular training as in ReProtect.

To evaluate the performance comparison in different budget

k, we vary the given k as shown in Figure 2. Both of our

proposed methods are able to outperform other competitors

align with the increasing given budget in all datasets, while

constantly maintain competitive performance in a very small

size of budget k. In PrimarySchool and Hypertext 2009

datasets, our proposed methods even can surpass the Degree

method from earlier states, the small size of k.

VI. CONCLUSION

In this paper, we have addressed the adaptive graph protec-

tion problem on dynamic networks. We introduce the n-step

fitted Q-learning to train our model under reinforcement ap-

proach. Using reinforcement learning approach, we introduce

more stochasticity to the protection policy to explore more

effective result. We further incorporate graph embedding

as a feature-based representation of the network states. We

demonstrate the potential of our proposals, namely ReProtect
and ReProtect-p, as non-deterministic approaches for the

problem. Results of the experimental evaluation in real-world

network datasets show that our proposed methods effectively

restrain epidemic propagation.
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