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Abstract—Advancements in deep neural networks have rev-
olutionized the way how we conduct our day-to-day activities
ranging from how we unlock our phones to self-driving cars.
Convolutional Neural Networks (CNN) play the principal role in
learning high level feature representations from visual inputs. It is
crucial to know how reliable those neural networks are as human
lives can be at stake. Recent experiments on the robustness of
CNNs show that they are highly susceptible to small adversarial
perturbations. Due to the increasing popularity of mobile devices,
there is a significant demand for CNN models which are smaller
enough to run on a mobile device without sacrificing the accuracy.
Although recent researches have been successful at achieving
smaller models with comparable accuracy on standard image
datasets, their robustness to adversarial attacks has not been
studied. However, massive deployment of smaller models on
millions of mobile devices stresses importance of their robustness.
In this work, we study how robust such models are with respect to
state-of-the-art compression techniques such as quantization. Our
contributions are summarized as follows: (1) insights to achieve
smaller and robust models (2) a compression framework which is
adversarial-aware. Our findings reveal that compressed models
are naturally more robust than compact models. This provides an
incentive to perform compression rather than designing compact
models. Additionally, the latter provides benefits of increased
accuracy and higher compression rate, up to 90×.

Index Terms—deep learning, compression, robustness

I. INTRODUCTION

Superior performance of Deep Learning has been a major
driving force in solving difficult and mundane tasks in our
every day life. From language translation to domination in
the game of Go, one can only question the potential of Deep
Neural Network (DNN) models [1]. Of many contributions,
the primary success of Deep Learning could be attributed
to the complexity of Convolutional Neural Network (CNN)
architectures itself [2]. In exchange of complexity for higher
performance, CNN models gained an inevitable increase in
file size and slower inferencing speed [3]. Although both
complexity and size are negligible for larger devices such as
personal computers, a remaining problem exists for smaller de-
vices like smartphones and embedded devices. Smaller devices
typically strive for efficient computation power. However, in
reality, CNN models can be very large. For instance, AlexNet
Caffemodel [4] and VGG-16 Caffemodel [5] are both over

* These authors contribute equally

200MB and 500MB respectively. It would be daunting if such
large models are loaded into memory on smaller devices with
low footprint. Thus, more attention has been paid towards
making CNN models smaller [6–9]. Current research is being
done along different approaches but with the common goal of
achieving smaller models without compromising the accuracy.
These approaches comprise of compressing a pre-trained larger
CNNs, retraining a smaller architecture from the ground up
(distillation) [10] and low-rank factorization [11, 12] of the
larger size CNN. However, a crucial question on robustness
of small networks has yet to been addressed. We raise the
question: “How far can a convolutional neural network be
compressed without compromising accuracy and robustness?”.

In our experiments we report the robustness of a CNN
model as the accuracy drop adversarial examples could cause.
An adversarial example is a sample of input data which has
been tampered with such that a DNN classifier classifies it
incorrectly. Our initial experiment shows that compressed and
compact CNNs are equally vulnerable to adversarial examples.
In an attempt to study further this issue, we explore the
correlation between adversarial examples with respect to com-
pression. To the best of our knowledge, this is the first attempt
to investigate large scale adversarial attack on compressed and
compact models. Hence, we highlight the contributions of this
paper as follows:

• We present an insight on robustness of compressed and
compact CNN models. We emphasize that compressed
models are more robust than compact CNNs.

• We show that adversarial training via quantization can
improve accuracy of compressed networks whilst also
being smaller. We achieved better compression rate (90×
on AlexNet) than the state-of-the-art method and being
the most robust against white-box adversarial attacks
compared to other AlexNet-based compression models.

The structure of this paper is divided into several sections.
Section II introduces ways to generate adversarial examples
and the methods that we employ in evaluating robustness.
Section III introduces related works to recent compression and
compacting methods. Consequently, we highlight the strengths
and weaknesses of both methods. In Section IV we introduce
our strategy to produce adversarial-aware compressed models.
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The remaining sections discuss about our experimental setup
and findings.

II. GENERATING ADVERSARIAL EXAMPLES

A recent finding by [13] describes an intriguing property of
neural networks; they are vulnerable to adversarial examples.
By slightly tampering input images, one can easily trick a
neural network to misclassify data with high confidence [14].
On the contrary, a bolder approach to adversarial examples
includes the introduction of a sticker (adversarial patch) in
the training image [15]. By including this sticker on various
images, Brown et al. is able to show that a CNN highly
confident classifier performs otherwise. It has been previously
hypothesized that such tricks (attacks) are possible due to
the nonlinearity property of CNNs. Later research [16, 17]
disproved this claim by showing that adversarial examples
can be found in larger continuous regions rather than in small
pockets due to nonlinearity. The generalization of adversarial
examples across different models can be explained as a result
of adversarial perturbations being highly aligned with the
weight vectors of a model, and different models learning
similar functions when trained to perform the same task.

There are two types of attacks depending on how the
adversarial examples are generated. White-box attacks are
crafted for a particular Machine Learning (ML) model using
knowledge of its parameters. Such attacks on an ML model
can be alleviated by restricting the access to the particular
model. The second type of attacks, black-box attacks exploit
transferability, an inherent aspect of ML models. Transferabil-
ity is the act of using adversarial examples generated by one
model to successfully attack a different model. An attacker
relying on black-box attacks does not require the knowledge
of internal parameters of the model, making such attacks more
plausible and harder to defend.

Left unattended, adversarial examples can lead to catas-
trophic events especially in fields such as autonomous vehicles
(self-driving cars). Specifically, cars can be crashed, illicit or
illegal content can bypass content filters, resulting in unpre-
dictable behaviors. To combat such security concerns, coun-
termeasures related to knowledge transfer has been proposed
[18]. Alternatively, an interesting approach is to introduce
an “adversarial detector”. Specifically, Xu et al. introduced
an additional filter known as feature squeezing [19]. This
filter acts as a detector which gets trained along the original
network. For a comprehensive summary of adversarial de-
fenses, we refer readers to [20] where Yuan et al. summarizes
a list of adversarial example countermeasures. To this end,
several kinds of defenses has been proposed, but none of
them concretely addresses the compressed network capacity.
In the following sections, we show that smaller model exhibits
similar behavior, but at the same time, their resiliency can be
improved in a very simple fashion.

In section VI , we report how a diverse set of DNNs perform
against both white-box and black-box adversarial attacks.
Furthermore, it should be noted that none of these attacks
guarantees that generated examples will be misclassified. The

number of misclassified adversarial examples is used as a
measure of robustness.

Fast gradient sign method (FGSM) [14] is one of the
first algorithms used to generate adversarial images. FGSM
is an efficient “one-shot” algorithm for generating adversarial
examples with a fixed l∞ norm. Let x be an input image
and xadv be the generated adversarial example. We denote
l(·, ·) be the differentiable loss function that was used to train
the classifier h(·), e.g., the cross-entropy loss. The FGSM
adversarial example corresponding to a score input x is:

xadv = x+ ε · sign(∇xl(x, h(x))), (1)

where ε is a hyper-parameter to be chosen for some ε > 0 that
governs the perturbation magnitude.

A straightforward extension of FGSM attack is the basic
iterative method (BIM) [17]. BIM is the application of FGSM
multiple times with small step size and clip pixel values
of intermediate results after each step. This will guarantee
that they are in an ε-neighborhood of the original input.
Let Clipx,ε{x′} denote the function which conducts per-pixel
clipping of x′ image ensuring the result in L∞ ε-neighborhood
of the source image x. The BIM adversarial example of input
image x is:

xadv0 = x, xadvn+1 = Clipx,ε{xadvn + αsign(∇xl(xadvn , h(x)))}.
(2)

III. COMPRESSING CONVOLUTIONAL NEURAL NETWORKS

Deep neural networks are often over parametrized. There-
fore, a fraction of weights in a network can be spared or
removed without impacting the original accuracy. The need
for compression of networks is driven by the restrictions on
the target hardware platform. Reducing energy consumption
and reducing model size are common goals in finding smaller
sized neural networks. We loosely refer all such techniques as
network compression. The research on network compression
can be grouped into following categories:
• Compressing pre-trained networks. This includes reduc-

ing the precision of weights, pruning, non-linear quanti-
zation and weight sharing.

• Training compact models from the ground up.
The former compression methodologies are network agnostic
whereas the latter requires re-engineering of the network
structure. In this paper, we focus our attention to the former.

A. Compressing Pre-Trained Networks

Since neural networks often contain redundant weights, a
large set of weights can be pruned away (i.e., set to zero).
Neural network pruning, termed optimal brain damage was
first proposed in 1989 by LeCun et al. [21] as a way to reduce
model complexity and overfitting. In most cases, proposed
methods on network pruning has resorted to trade accuracy
for size and performance. However, a recent work by Han
et al. [22] alleviated the problem by coupling pruning with
fine-tuning. Coupling network pruning with quantization and
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Fig. 1: Pipeline for compressing CNN to increase robustness and compression rate. Firstly, a pre-trained model for fine-tuning
and prune unnecessary weights. Secondly, a mixture of adversarial examples with original training datasets are introduced during
quantization phase. Finally, codebook is produced based on finalized weights in power of twos or zeroes. For visualization
purposes, we use a fully connected layer. Bottom red nodes indicate adversarial examples. Green and blue edges denote INQ
quantization phases, where a section of low-weights are first quantized (green) followed by remaining weights.

encoding in a three stage compression pipeline, Han et al.
[6] proposed Deep Compression which achieved a higher
compression ratio. Notably, AlexNet was compressed up to
35× and VGG-16 up to 49× without loss of accuracy. This
approach, however, is slow and cumbersome. Iterative pruning
itself requires significant amount of training time to ensure no
accuracy loss. Moreover, Deep Compression requires special-
ized hardware [3] for inferencing. A smarter pruning approach
called Dynamic Network Surgery (DNS) was proposed by
Guo et al. [23]. Independently, Ullrich et al. [7] unifies the
compression pipeline of pruning and quantization by posing it
as a mixture model problem. Although the compression ratio
is significantly higher, this approach is not scalable for larger
models like VGG-16. More recently, Zhou et al. [24] suggest
quantizing weights in powers of twos or zeroes. Coined
as Incremental Network Quantization (INQ), the proposed
method achieved an impressive compression ratio up to 89×
on AlexNet when coupled with DNS and 3-bit compression.
Because the quantized weights are in powers of two or zeroes,
it has the potential to speed up inferencing speed without
relying on specialized hardware. This is possible with bit-
shifting operations widely available on CPU and GPU.

One major disadvantage of the compression techniques
mentioned above is that they require special hardware or
improvements to existing DNN frameworks to achieve the
full potential of smaller model size. Reducing the precision
of weights and operations of pre-trained networks [25] is
another technique used to achieve speed and reduced model

size. Even though low precision network models can be run
on commodity hardware easily, the size of such models are
often larger than the ones obtained through pruning and
quantization.

B. Designing Compact Neural Network Models

Besides compression, another approach to obtain smaller
network models with comparable performance to the larger
models is designing of compact network architectures.
SqueezeNet [26] and MobileNets [27] are such compact
architectures designed to be run on hardware platforms with
resource restrictions. Even though such models are shown to
have accuracy levels only slightly worse than the state-of-
art, they are significantly smaller than the latter. In our case
study, we utilize both SqueezeNet and MobileNets due to their
widespread popularity.

IV. ADVERSARIAL-AWARE COMPRESSION FRAMEWORK

Contrary to previous approaches which accomplish model
compression without a robustness objective, we incorporate
training with adversarial examples benefiting from three inter-
dependent techniques: Dynamic Network Surgery (DNS) on-
the-fly connection pruning, Incremental Network Quantization
(INQ) low bit-width layer precision weights and DEFLATE
encoding. The outcome of this approach is a small yet robust
network. It has been presumed that adversarial training can
behave like a regularizer [28]. Thus, this approach makes the
network much more robust and perform better.
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A. Network Pruning with Dynamic Network Surgery

We use Dynamic network surgery (DNS) [23] as the pruning
algorithm. DNS employs two operations, pruning and splicing.
Pruning reduces the number of parameters of the model by
removing unimportant parameters as similar to [6]. Splicing
operation overcomes the problem of incurring accuracy loss
due to over-pruning or incorrect pruning by restoring some of
the previously pruned parameters based on their current value
of importance. Parameter importance is decided by the com-
bined application of pruning and splicing. Furthermore, DNS
achieved 7× speed-up (approximately 140 epochs) during
retraining of AlexNet model and it achieved an improvement
in pruning from 9× to 17.7×.

Specifically, given lth layer of the network, the goal of DNS
is optimizing the following loss function:

min
Wl,Cl

L(Wl � Cl)

s.t. C(a,b)
l = hl(W

(a,b)
l ),∀(a, b) ∈ I

(3)

being L(·) the network loss function, � denotes the Hadamard
product operator, set I made up of all elements in weight
matrix Wl, and hl is a discriminative function satisfying
hl(w) = 1 if parameter w is considered important in the lth

layer, and 0 otherwise. We compose function hl(·) based on
some prior knowledge aiming to constrict the possible area of
Wl � Cl and reduce the initial NP-hard problem.

Furthermore, we only need to consider the update scheme
of Wl since the binary matrix Cl can be defined under the
constraint of Formula 3. With regards to the updating of
Lagrange Multipliers and gradient descent, Wl can be updated
under the following scheme:

W
(a,b)
l ←W

(a,b)
l − α ∂

∂W
(a,b)
l C

(a,b)
l

L(Wl � Cl),

∀(a, b) ∈ I
(4)

where α denotes a positive learning rate. With respect to
that, the entries of Cl, which are assumed to be insignificant
and ineffective are given a second chance. This approach is
useful to enhance the adaptability of our method because it
enables the splicing of inappropriately pruned connections.
Consequently, it helps the network to escape local optima
which further helps to speed up pruning; which is known
to be very time consuming process. To compute the partial
derivatives in Formula 4, we use the chain rule with a
randomly picked minibatch of samples. When matrix Wl and
Cl are updated, they will be applied to re-compute the entire
network activations and loss function gradient. By iteratively
repeating these steps, the sparse model will have the ability to
deliver better accuracy.

Pruning can be performed at whichever point the current
connections are considered as unimportant. However, erro-
neously pruned parameters should be restored if it significantly
affect the network’s accuracy.

B. Adversarial Training with Incremental Network Quantiza-
tion

The adversarial training phase corresponds to minimizing
an upper bound on the expected cost over noisy examples by
adding noise to the inputs.

We employ a well proven network quantization of INQ [24]
to efficiently convert pre-trained full-precision CNN model
under a low-precision version constrained weights in either
powers of two or zero.

min
Wl

E(Wl) = L(Wl) + ψR(Wl)

s.t. Wl(a, b) ∈ Pl, when Tl(a, b) = 0, 1 ≤ l ≤ L,
(5)

being E(Wl), L(Wl) and R(Wl) the expected weights of
layer l, network loss and the regularization terms respectively.
Regularization term is learned using ψ positive coefficient.
With this minimization, subjected to Wl(a, b), the weight
element should be derived from the constraint set Pl which
consists of fixed values of either powers of twos or zero.
Tl(a, b) = 0 denotes the weight element, Wl(a, b), that will
be quantized in the next step of iteration.

In each re-training iteration, we update the weight set under
the following scheme:

Wl(a, b)←Wl(a, b)− β
∂E

∂(Wl(a, b))
Tl(a, b), (6)

where β is a positive learning rate.

Algorithm 1 Adversarial Training with DNS + INQ + DE-
FLATE

Input: training data with adversarial examples X, pre-trained
full-precision CNN model {Wl : 1 ≤ l ≤ L}

Output: quantized weights {Ŵl : 1 ≤ l ≤ L} in values to
be either powers of two or zero, codebook hl = {0, ..., 2b}
mapping to Ŵ in encoded form.
Ŵ← DNS(Wl)
Initialize A

(1)
l ← ∅, A

(2)
l ← {Ŵl(i, j)}, Tl ← 1, for

1 ≤ l ≤ L
for n = 1, ..., N do

Reset base learning rate and the learning policy
Based on σn, perform layer-wise weight partition and

update A
(1)
l ,A

(2)
l and Tl

Based on A
(1)
l , determine P

(1)
l

Quantize weights in A
(1)
l based on [24]

Retrain and update weights A
(2)
l : 1 ≤ l ≤ L

Update Ŵl in-place w.r.t A
(1)
l , A(2)

l

end for
for n = 1, ..., L do

Generate codebook index for quantized Ŵl

end for
return DEFLATE(Ŵ,h)

We present the adversarial training with DNS, INQ and
DEFLATE in Algorithm 1. Several parameters in the algorithm
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has to be adjusted to obtain satisfactory results. Notably, we
adjusted the amount of adversarial examples contained in
Xbatch base on λ. In our experiment, we use λ as suggested
in [28]. For instance, with a batch size of 256 and λ = 0.5,
128 adversarial examples and 128 clean examples are used.

C. DEFLATE Encoding

Huffman encoding was adopted by Han et al. [6] as an
attempt to further compress the quantized network, pushing
compression rate from 27× to 35× for AlexNet and 31× to
49× for VGG-16. The drawback of this approach is the need
to decompress the model before being potentially useful to any
software. In [6]’s case, a specialized hardware was proposed
to perform the inferencing [3]. Although the inference speed
is remarkable, it is not suited for standard GPU or CPU
processors. In our method, we adopt the DEFLATE (LZ77
+ Huffman) algorithm for compression instead of standard
Huffman encoding. The DEFLATE algorithm is a widely
supported algorithm for lossless compression. In practice,
this algorithm has been integrated into standard consumer
hardware such as System on Chips (SoC) for fast compression
and decompression.

In essence, the DEFLATE algorithm comprises of two
phases: duplicate string elimination and bit reduction. Du-
plicated series of bytes spotted are back-referenced, linking
the current series of bytes to the previous location. This is
done using a sliding window. As for bit reduction, Huffman
coding is used. Essentially, a series of bytes that appear more
often are represented with the shorter sequence of bits. In our
case, the higher the frequency weights are represented with
a shorter bit length. This representation can be constructed
using a Huffman tree which predetermines the sequence of
codes when reconstructed.

V. EXPERIMENTAL SETUP

In this section, we describe the models and datasets that
we use in our experiments. We use ImageNet Scale Visual
Recognition Challenge 2012 (ILSVRC 2012) [30] as the
dataset for training and validating all our models. Presently this
is one of the largest publicly available dataset with over 1,000
object classes, 1.2 million training images and 50 thousand
validation images. The classes are annotated and verified via
Amazon Mechanical Turk workers. Using center crops of
validation and training images as suggested in [4, 5], we train
the models from the ground up if a pre-trained model is not
publicly available. The CNNs used in this experiment are:
• Compressed models: Two pre-trained AlexNet models,

one compressed using DeepCompression and the other
compressed using Iterative Quantization Method (INQ)

• Compact models: Squeezenet and MobileNets-V1
• Low precision model: Inception-V3, both weights and

computations converted to 8-bit integer values
All experiments are conducted using Caffe [31] and Tensor-
flow. Caffe models are obtained from “Caffe model-zoo”1.

1https://github.com/BVLC/caffe/wiki/Model-Zoo

All adversarial images are generated using TensorFlow frame-
work using the adversarial attack library ’Cleverhans’ [32].
For models which do not have publicly available pre-trained
Tensorflow models (eg: AlexNet), the model and weights
are converted from Caffe to Tensorflow using a free and
open-source tool 2. Prior to use in experiments, we verified
the converted Tensorflow models with ImageNet validation
dataset. We report the results in two standard measures, namely
top-1 and top-5 accuracy. We perform our experiments on a
Ubuntu 16.06 LTS PC with an Intel(R) Core(TM) i9-7900X
CPU @ 3.30GHz CPU and NVIDIA GTX 1080 Ti SLI GPU.

VI. RESULTS AND DISCUSSION

In this section we demonstrate how different network mod-
els performed on adversarial images. All models are pre-
trained with ImageNet dataset. The accuracy is reported with
respect to the ImageNet validation dataset consisting of 50,000
images. We set the ε value of FGSM method to 2. An
interesting issue in constructing the adversarial examples is
known as label leaking effect [28]. If the true labels of images
are used in the process of adversarial image generation with
a single-step attack method such as FGSM, an adversarially
trained model can learn to exploit regularities in the adver-
sarial example generation process. This provides incentives to
construct adversarial examples without the use of ground truth
label. To alleviate this issue, we use the class corresponding
to the maximum prediction probability instead.

Table I lists the models we used in our experiments. Int8
network is obtained by converting both weight matrices and
computations of a pre-trained Inception-v3 model to 8 bit
integers using Tensorflow3 framework.

A. White-box attacks

In white-box attacks, the model which is being attacked is
used to generate the adversarial examples. For instance, we
generate adversarial images with an Inception-v3 model for
ImageNet validation dataset and we report the accuracy of the
same model for the generated images. Table II illustrates how
each model fared against white-box attacks.

We observed that among all AlexNet-based model, our
proposed model is more robust against white-box adversarial
attacks. It achieves better accuracy on clean images as well as
adversarial examples generated using FGSM and BIM meth-
ods compared to the original and other compressed models of
AlexNet.

B. Black-box attacks

We generated the adversarial examples using one model and
test all other models using the adversarial images generated.
Similarly, we used BIM method as well. But we observed that
the effectiveness of black-box attacks with BIM method is low
as reported by [28]. Hence, we limited our study on trans-
ferability only to FGSM method. Because both weights and
matrix multiplications of Inception-V3 model are converted to

2https://github.com/ethereon/caffe-tensorflow
3https://www.tensorflow.org/performance/quantization
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TABLE I: Models used in experiments

Model Type Size (MB) Parameters (in Million)

Inception-v3 [29] Original architecture 108.8 25
AlexNet [4] Original architecture 240 61
MobileNets-v1 [27] Compact architecture 68 4.2
SqueezeNet [26] Compact architecture 4.8 1.2
DeepCompression [6] Compression (AlexNet) 6.9 6.7
INQ [24] Compression (AlexNet) 2.69 6.7
Int8 Low precision (Inception-v3) 24.7 25

TABLE II: Accuracy on white-box attacks using FGSM and
BIM

Model Clean images FGSM BIM

Inception-v3 Top-1 0.7717 0.4279 0.3225
Top-5 0.9351 0.7220 0.6917

MobileNets-v1 Top-1 0.7048 0.1604 0.0016
Top-5 0.8941 0.4084 0.0057

SqueezeNet Top-1 0.5750 0.2184 0.2984
Top-5 0.8030 0.3928 0.5224

AlexNet-based Model

Original Top-1 0.5724 0.2912 0.2492
Top-5 0.8023 0.5076 0.4540

DeepComp Top-1 0.5624 0.2684 0.2580
Top-5 0.7968 0.5040 0.4708

INQ Top-1 0.5739 0.2460 0.2880
Top-5 0.8046 0.4496 0.5104

Proposed Top-1 0.5818 0.3364 0.3620
Top-5 0.8135 0.5648 0.6008

8-bit integers, it is not possible to compute gradients of the
int8 model. Thus, we use this model only to test its robustness
against black-box attacks.

As shown in Table III, we observed high transferability
of adversarial images for FGSM method. One noticeable
exception is that the sparse model obtained using incremental
quantization (INQ) exhibiting higher accuracy than the original
AlexNet model on both adversarial attacks. Each diagonal cell
in Table III represents the accuracy of a model on adversarial
images generated with itself, hence the white-box attacks. Rest
of the cells show the accuracy of black-box attacks. Our results
exhibit that all the networks we used are vulnerable to both
white-box and black-box attacks.

C. Robustness of Smaller Models

We quantize vulnerability of a model by calculating follow-
ing quantity.

V ulnerability =

(accuracy on ImageNet)− (accuracy on adversarial examples)
(accuracy on ImageNet)

(7)

Figures 2a and 2b show the vulnerability of each model
as a heat-map. Each diagonal cell represents the accuracy of
a model on adversarial images generated with itself, hence
the white-box attacks. Rest of the cells show the accuracy on
images generated by black-box attacks.

Two networks which exhibit the maximum deviation of ac-
curacy for white-box attacks are MobileNets and SqueezeNet.
According to the results, MobileNets model is not able to
correctly label 84% of the adversarial images created by itself.
Even though MobileNets model attains a comparable accuracy
level for clean images, it performs much worse when it is
confronted with adversarial images. We believe that the low
model capacity of MobileNets compared to Inception model
as the factor contributing to higher vulnerability to adversarial
attacks. Interestingly, the low-precision Int8 model performed
almost similar to Inception-V3 model. Even though it is not
possible to do a direct white-box attack for Int8 model, the
adversarial images generated using Inception-V3 can reduce
the accuracy significantly.

An important insight we can gain from this experiment
is that the compression of pre-trained networks results in
smaller networks with a relatively low impact on robustness
compared to compact networks trained from the ground up.
Investigating why compact models show higher vulnerability
to white-box attacks is a research direction which may shed
light on designing more robust compact networks.

D. Compression Rate

We use PAQ8 by [33] as a baseline. PAQ8 is agnostic to
file structures and employs ensembles learning approaches for
lossless compression. When compared to Deep Compression,
the baseline compression reports a compression rate of 38×
without any structural knowledge of the weight matrix. In INQ,
[24] reports a compression rate up to 89× when represented in
3-bit storage format. In our work, we obtain a slightly higher
compression rate when DEFLATE is used. We present our
results as shown in Table IV.

Overall, our method achieves an additional compression
rate of 1× compared to the state-of-the-art. Furthermore, it
gained an increased in performance of 1% for Top-5 accuracy
and Top-1 accuracy. Given the fact that only us who use
the adversarial training, we hypothesize that the increase in
accuracy performance could be related to adversarial examples
behaving as a regularizer.

E. Energy Consumption

We further investigate the energy efficiency of our proposal
compared to AlexNet based models. We perform 10 evalu-
ation runs on ImageNet’s validation dataset (clean images).
The evaluation settings are of default setting; 50 images per
batch amounting to 1 epoch (1,000 iterations) on an Ubuntu
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TABLE III: Accuracy on adversarial images

Target Model

Source Model Inception AlexNet DeepComp. INQ Sq.Net MobileNets Int8

Inception Top-1 0.4279 0.3288 0.3132 0.3320 0.2624 0.4417 0.3176
Top-5 0.7220 0.5432 0.5396 0.5604 0.4848 0.7006 0.5920

AlexNet Top-1 0.5246 0.2912 0.2808 0.2704 0.2296 0.3960 0.5124
Top-5 0.7543 0.5076 0.5012 0.4908 0.4528 0.6346 0.7360

DeepComp. Top-1 0.5257 0.2888 0.2684 0.2724 0.2400 0.3910 0.5133
Top-5 0.7493 0.5200 0.5040 0.4988 0.4488 0.6278 0.7368

INQ Top-1 0.5163 0.2676 0.2532 0.2460 0.2320 0.3768 0.4947
Top-5 0.7343 0.4868 0.4804 0.4496 0.4320 0.6162 0.7240

SqueezeNet Top-1 0.5980 0.2836 0.2720 0.2812 0.2184 0.4410 0.5559
Top-5 0.8088 0.4988 0.5028 0.5068 0.3928 0.6902 0.7932

MobileNets Top-1 0.4630 0.2400 0.2252 0.1868 0.1864 0.1604 0.4527
Top-5 0.7366 0.4556 0.4400 0.3848 0.3904 0.4084 0.7216
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Fig. 2: Vulnerability on adversarial images generated using FGSM

TABLE IV: Compression on AlexNet based on various approaches. P denotes pruning, Q denotes Quantization, H denotes
Huffman Encoding and D denotes DEFLATE.

Methods Comp. Top-1 Error % Top-5 Error % Size (MB)

Original - 42.76 19.77 240
PAQ8 (P+H) 38x 42.70 19.67 6.3
DeepCompression (P+Q+H) 35x 43.76 20.32 6.9
INQ (P+Q) 89x 42.61 19.54 2.69
Proposed (P+Q+D) 90x 41.82 18.65 2.64

16.06 LTS PC with an Intel(R) Core(TM) i9-7900X CPU @
3.30GHz CPU and NVIDIA GTX 1080 Ti SLI GPU. Table
V shows the average value comparison of 10 runs in terms of
inference time, average power and energy consumption. While
all compression methods of AlexNet show better average
power and energy consumption than original models, our
method gained an increased energy efficiency.

VII. CONCLUSION

In this paper we studied the robustness to adversarial
examples of compressed and compact CNN models trained
on ImageNet. In our experiments we used two adversarial

example generation techniques, FGSM and BIM. Using a
variety of CNN models, we demonstrate that smaller models
are as vulnerable as the state-of-the-art full sized models. One
distinguishable observation we could make is that compact
models such as SqueezeNet are more vulnerable to adversarial
examples compared to models made smaller by compressing
full sized pre-trained models. We believe that high redundancy
of weights coupled with regularization techniques such as
dropout makes the larger network architectures more robust
to perturbations in input. Based on experimental results, we
stress that robustness to adversarial attacks should be used as
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TABLE V: Energy consumption on AlexNet based on various compression methods.

Time (s) Average Power (J) Energy (J)

Methods Average Std. Dev. Average Std. Dev. Average Std. Dev.

Original 28.684 0.110 227.433 4.205 6,523.977 137.654
DeepCompression 28.695 0.138 219.647 3.437 6,302.909 110.570
INQ 28.680 0.121 214.629 3.062 6,155.900 110.552
Proposed 28.686 0.124 214.072 3.492 6,141.046 111.892

a metric in addition to accuracy in any network compression
process.
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