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Abstract—Recent studies on robustness of Convolutional Neu-
ral Network (CNN) shows that CNNs are highly vulnerable
towards adversarial attacks. Meanwhile, smaller sized CNN
models with no significant accuracy loss are being introduced to
mobile devices. However, only the accuracy on standard datasets
is reported along with such research. The wide deployment of
smaller models on millions of mobile devices stresses importance
of their robustness. In this research, we study how robust
such models are with respect to state-of-the-art compression
techniques such as quantization. Our contributions include:
(1) insights to achieve smaller models and robust models (2)
a compression framework which is adversarial-aware. In the
former, we discovered that compressed models are naturally
more robust than compact models. This provides an incentive
to perform compression rather than designing compact models.
Additionally, the latter provides benefits of increased accuracy
and higher compression rate, up to 90×.

Index Terms—deep learning, compression, robustness

I. INTRODUCTION

Machine learning algorithms has helped us overcome many
struggles in our every day life. From language translation,
discovering new drugs and domination in games such as
Go, the performance of machine learning algorithms today
is unquestionably highly favored by recent breakthrough in
training Deep Neural Networks (DNN) which is now called
Deep Learning [1]. One of the primary ingredient to the
successes of Deep Learning models is due to the success of
highly complicated models such as the Convolutional Neural
Network (CNN) architectures itself [2]. These complicated
model resulted in higher performance gain, with the conse-
quences of gaining larger model. As a result, the model is
bigger in file size, higher memory consumption and slower
inferencing speed [3]. Although negligible for larger devices
such as personal computers, it remains a fundamentally chal-
lenged problem for smaller devices especially smart phones
and devices on the edge (embedded devices). These devices
are typically build to be energy efficient and has much smaller
computational power. State-of-the-art DNN models such as
AlexNet Caffemodel [4] and VGG-16 Caffemodel [5] easily
outsize these requirements; with the former model being
200MB and the latter 500MB. Such large models are difficult
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to fit on smaller devices with low footprint. To ensure state-
of-the-art performances in such scenario, several methods has
been proposed to shrink CNN models [6–9]. These methods
are specifically tuned to handle compression without compro-
mising the accuracy of existing models. Furthermore, they are
architecture agnostic and does not require models to be rebuild.
On the contrary, approaches like distillation [10] and low-rank
factorization [11, 12] require models to be rebuild. Although
various approaches exist, a crucial question remains to be
unaddressed, “How far can compressed Convolutional Neural
Networks be compressed without compromising accuracy and
robustness?”.

To this end, we attempt to address the above question.
We show experimentally show that compressed and compact
CNNs are equally vulnerable to adversarial examples; a sample
of input data which has been perturbed to encourage the
classifier to misclassify. In attempt to study this issue, we
explore the correlation between adversarial examples with
respect to compression. To the best of our knowledge, this
is the first attempt to investigate large scale adversarial at-
tack on compressed and compact models. We summarize the
contributions of this paper as follows:

• We present an insight on robustness of compressed and
compact CNN models. We emphasize that compressed
models are more robust than compact CNNs.

• We experimentally show that adversarial training via
quantization can improve accuracy of compressed net-
works whilst also being smaller. Our proposed framework
achieved better compression rate (90× on AlexNet) than
the state-of-the-art method and is the most robust against
white-box adversarial attacks compared to other AlexNet-
based compression models.

The structure of this paper is divided into several sections.
Section II introduces ways to generate adversarial examples
and the methods that we employ in evaluating robustness.
Section III introduces related works to recent compression and
compacting methods. Consequently, we highlight the strengths
and weaknesses of both methods. In Section IV we introduce
our strategy to produce adversarial-aware compressed models.
The remaining sections discuss about our experimental setup
and findings.
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II. GENERATING ADVERSARIAL EXAMPLES

Szegedy, et al. [13] reported an intriguing property of
machine learning models including neural networks; their
vulnerability to adversarial examples. One can simply trick
a neural network model to misclassify data with a high
confidence by slightly perturbing input images [14]. On the
contrary, a bolder technique to adversarial examples includes
the introduction of an adversarial patch (sticker) in the training
image [15]. By including this sticker on various images,
Brown et al. is able to prove that a highly confident CNN
classifier performs otherwise. The nonlinearity property of
CNNs has been previously hypothesized as a possible cause
of such tricks (attacks). Later finding [16, 17] disproved this
claim by showing that adversarial examples can be found in
larger continuous regions rather than in small pockets due to
nonlinearity. The generalization of adversarial attacks across
various models can be explained as a result of adversarial
perturbations being highly aligned with the weight vectors of
a model, and different CNN models learning similar functions
when trained to perform the same task.

Two types of adversarial attacks can be performed de-
pending on how the adversarial images are generated. The
first type of attacks, white-box attacks are constructed for a
particular Machine Learning (ML) model utilizing knowledge
of its parameters. White-box attacks on an ML model can
be mitigated by restricting the access to the particular model.
Black-box attacks exploits transferability property, an inherent
aspect of machine learning models. Transferability is the act
of using adversarial examples generated by one model to
successfully attack a different model. An attacker relying on
black-box attacks does not require the knowledge of internal
parameters of the model, making such attacks more plausible
and harder to defend.

Without special attention, adversarial examples can lead to
disastrous accidents especially in fields such as autonomous
vehicles (self-driving cars). For instance, cars can be crashed,
illicit or illegal content can bypass content filters, resulting
in unpredictable behaviors. To combat such security con-
cerns, countermeasures related to knowledge transfer has been
proposed [18]. Alternatively, an interesting approach is to
introduce an “adversarial detector”. Specifically, Xu et al.
introduced an additional filter known as feature squeezing
[19]. This filter acts as a detector which gets trained along the
original network. For a comprehensive summary of adversarial
defenses, we refer readers to [20] where Yuan et al. summa-
rizes a list of adversarial example countermeasures. To this
end, several kinds of defenses has been proposed, but none of
them concretely addresses the compressed network capacity.
In the following sections, we show that smaller model exhibits
similar behavior, but at the same time, their resiliency can be
improved in a very simple fashion.

In section VI , we report how a diverse set of DNNs perform
against both white-box and black-box adversarial attacks.
Furthermore, it should be noted that none of these attacks
guarantees that generated examples will be misclassified. The

number of misclassified adversarial examples is used as a
measure of robustness.

Fast Gradient Sign Method (FGSM) [14] is one of the
first techniques used for generating adversarial images. FGSM
is a “one-shot” technique for efficiently generating adversarial
examples using a fixed l∞ norm. Given x as an input image
and xadv be the generated adversarial example. Let us denote
l(·, ·) be the differentiable loss function that was used to train
the classifier h(·), e.g., the cross-entropy loss. The FGSM
adversarial example corresponding to a score input x is:

xadv = x+ ε · sign(∇xl(x, h(x))), (1)

being ε a hyper-parameter to be selected for some ε > 0 that
controls the perturbation magnitude.

Basic Iterative Method (BIM) [17] is a straightforward
extension of FGSM technique. BIM applies FGSM iteration
multiple times with small step size and clip pixel values of
intermediate results after each step. This iteration process
provides a guarantee that the adversarial images are in an ε-
neighborhood of the original images. Let Clipx,ε{x′} denotes
the function which performs per-pixel clipping of x′ image
ensuring the result in L∞ ε-neighborhood of the original input
x. The generated adversarial BIM example of input image x
is:

xadv0 = x, xadvn+1 = Clipx,ε{xadvn + αsign(∇xl(xadvn , h(x)))}.
(2)

III. COMPRESSING CONVOLUTIONAL NEURAL NETWORKS

CNN models are often over parametrized. For that reason,
a fraction of weights (parameters) in a CNN model can be
removed or pruned without reducing the original accuracy.
The requirement for compression of deep neural networks is
driven by the restrictions on the aimed hardware platform.
Compressing model size as well as reducing energy consump-
tion are common objectives in obtaining smaller sized neural
networks. In this work, we loosely define all such techniques
as network compression. The study on network compression
can be classifed into following categories:
• Compressing pre-trained full size networks. This includes

pruning methods, reducing the precision of weights, non-
linear quantization and soft weight sharing.

• Constructing and training compact CNN models from
scratch.

The former compression class are network agnostic while the
latter requires re-engineering of the network architecture. In
this work, our focus is the former compression class.

A. Compressing Pre-Trained Networks

Convolutional neural networks often contain redundant
weights provide us a large set of weights that can be pruned
away (i.e., set to zero). Network pruning technique, called
as optimal brain damage was first introduced by LeCun
et al. [21] as an attempt to avoid overfitting and reduce
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Fig. 1: Proposed pipeline of CNNs compression to increase robustness and compression rate. Firstly, a pre-trained full size
model is fine-tuned and pruned unnecessary weights. Secondly, a combination of adversarial training with original image
datasets are introduced during network quantization phase. Finally, codebook is produced based on finalized network weights
in power of twos or zeroes. For visualization purposes, we use a fully connected layer. Bottom red nodes indicate adversarial
examples. Green and blue edges denote INQ quantization phases, where a section of low-weights are first quantized (green)
followed by remaining weights.

model complexity. In most cases, existing methods on net-
work pruning has proposed to trade accuracy for size and
performance. However, a recent finding by Han et al. [22]
alleviated this issue by coupling pruning with fine-tuning. In
a three stage compression pipeline of network pruning with
quantization and Huffman encoding, Han et al. [6] introduced
Deep Compression which obtained a better compression ratio.
Notably, AlexNet was compressed up to 35× and VGG-16 up
to 49× without loss of accuracy. This approach, however, is
computationally slow and inefficient. Iterative pruning itself
needs huge amount of training iteration and time to guarantee
no accuracy loss. Furthermore, Deep Compression requires
specialized hardware [3] for inferencing. A smarter pruning
approach called Dynamic Network Surgery (DNS) was pro-
posed by Guo et al. [23]. Independently, Ullrich et al. [7]
unifies the compression pipeline of pruning and quantization
by treating it as a problem of mixture model. Even though the
compression ratio is significantly higher, this approach is not
scalable for larger models like VGG-16. More recently, Zhou
et al. [24] suggest to quantize network weights in powers of
twos or zeroes. Termed as Incremental Network Quantization
(INQ), the proposed method obtained an impressive result with
up to 89× compression ratio on AlexNet when coupled with
DNS and 3-bit compression. Because the value of quantized
weights are constrained in powers of two or zeroes, it has the
potential to give a fast inferencing speed without requirement
of specialized hardware. This approach is promising to be

implemented with bit-shifting operations which are widely
available on CPU and GPU.

One important disadvantage of the compression techniques
discussed above is that they need customized hardware or
improvements to existing CNN frameworks to gain the full
potential of smaller model size. Reducing the precision of
weights and operations of pre-trained networks [25] is another
technique used to obtain better speed and reduced model size.
Even though low precision network models can be applied
on commodity hardware easily, the size of such models are
often bigger than the ones obtained through pruning and
quantization.

B. Designing Compact Neural Network Models

Besides compression, another approach to achieve smaller
network models with comparable performance to the larger
models is constructing a compact network architectures.
SqueezeNet [26] and MobileNets [27] are examples of such
compact architectures designed to be used on hardware plat-
forms with resource limitations. Even though such models
exhibit accuracy performance only slightly worse than the
state-of-art, they are significantly smaller than the latter. In
our investigation, we use both SqueezeNet and MobileNets
models due to their widely known application.

IV. ADVERSARIAL-AWARE COMPRESSION FRAMEWORK

One distinct contribution to existing compression ap-
proaches which design models without a robustness objective,
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we include training with adversarial examples taking advan-
tage of three interdependent techniques: Dynamic Network
Surgery (DNS) on-the-fly network weight pruning, Incremen-
tal Network Quantization (INQ) low bit-width layer precision
weights and DEFLATE encoding. The outcome of this pipeline
is a small yet robust network. It has been hypothesized that
adversarial training of CNNs can act as a model regularizer
[28]. Hence, this training makes the network much more robust
against adversarial attacks and gain a better performance.

A. Network Pruning with Dynamic Network Surgery

We utilize an efficient pruning algorithm, Dynamic network
surgery (DNS) [23] to reduce the redundancy of network
weights. DNS consists of two operations, pruning and splicing.
Pruning operation reduces the number of weights (parameters)
of CNN model by removing unimportant parameters. This
operation is similar to a well proven pruning method of [6].
Splicing overcomes the problem of incurring accuracy loss
resulted from incorrect pruning or over-pruning by restoring
some of the previously pruned weights based on their present
importance value. Parameter importance is decided by the
combined application of pruning and splicing. Moreover, DNS
obtained 7× speed-up (approximately 140 epochs) during re-
training of AlexNet model and it achieved better compression
rate of pruning from 9× to 17.7×.

Specifically, the objective of DNS is to optimize the given
lth layer of the network using the following loss function:

min
Wl,Cl

L(Wl � Cl)

s.t. C(a,b)
l = hl(W

(a,b)
l ),∀(a, b) ∈ I

(3)

being L(·) the network loss function, � denotes the Hadamard
product operator, set I made up of all elements in weight
matrix Wl, and hl is a discriminative function satisfying
hl(w) = 1 if parameter w is considered important in the lth

layer, and 0 otherwise. We compose function hl(·) based on
some prior knowledge aiming to constrict the possible area of
Wl � Cl and reduce the initial NP-hard problem.

Furthermore, we only need to consider the update scheme
of Wl since the binary matrix Cl can be defined under the
constraint of Formula 3. With regards to the updating of
Lagrange Multipliers and gradient descent, Wl can be updated
under the following scheme:

W
(a,b)
l ←W

(a,b)
l − α ∂

∂W
(a,b)
l C

(a,b)
l

L(Wl � Cl),

∀(a, b) ∈ I
(4)

where α denotes a positive learning rate. With respect to
that, the entries of Cl, which are assumed to be insignificant
and ineffective are given a second chance. This approach is
useful to enhance the adaptability of our method because it
enables the splicing of inappropriately pruned connections.
Consequently, it helps the network to escape local optima
which further helps to speed up pruning; which is known
to be very time consuming process. To compute the partial

derivatives in Formula 4, we use the chain rule with a
randomly picked minibatch of samples. When matrix Wl and
Cl are updated, they will be applied to re-compute the entire
network activations and loss function gradient. By iteratively
repeating these steps, the sparse model will have the ability to
deliver better accuracy.

Pruning can be performed at whichever point the current
connections are considered as unimportant. However, erro-
neously pruned parameters should be restored if it significantly
affect the network’s accuracy.

B. Adversarial Training with Incremental Network Quantiza-
tion

We conduct adversarial training phase to minimize an upper
bound on the expected cost over noisy examples by including
noise to the original inputs.

We utilize a proven efficient network quantization tech-
nique, called INQ [24] to convert pre-trained full-precision
network into a low-precision version constrained weights in
either powers of two or zero.

min
Wl

E(Wl) = L(Wl) + ψR(Wl)

s.t. Wl(a, b) ∈ Pl, when Tl(a, b) = 0, 1 ≤ l ≤ L,
(5)

being E(Wl), L(Wl) and R(Wl) the expected weights of
layer l, network loss and the regularization terms respectively.
Regularization term is learned using ψ positive coefficient.
With this minimization, subjected to Wl(a, b), the weight
element should be derived from the constraint set Pl which
consists of fixed values of either powers of twos or zero.
Tl(a, b) = 0 denotes the weight element, Wl(a, b), that will
be quantized in the next step of iteration.

In each re-training iteration, the weight set is updated using
the following scheme:

Wl(a, b)←Wl(a, b)− β
∂E

∂(Wl(a, b))
Tl(a, b), (6)

where β is a positive learning rate.
The proposed adversarial training combined with DNS,

INQ and DEFLATE is presented in Algorithm 1. Several
hyperparameters in Algorithm 1 has to be adjusted to obtain
satisfactory results. Notably, we adjusted the amount of adver-
sarial examples contained in Xbatch base on λ. In our work,
we use λ as suggested in [28]. For instance, with a batch size
of 256 and λ = 0.5, 128 adversarial examples and 128 clean
examples are used.

C. DEFLATE Encoding

Han, et al. [6] introduced Huffman encoding as an attempt to
further compress the quantized network, pushing compression
rate from 27× to 35× for AlexNet and 31× to 49× for VGG-
16. The drawback of this approach is the need to decompress
the model before being potentially useful to any software. In
[6]’s case, a specialized hardware was proposed to perform the
inferencing [3]. Although the inference speed is remarkable,
it is not suited for standard GPU or CPU processors. In our

171



TABLE I: Models used in experiments

Model Type Size (MB) Parameters (in Million)

Inception-v3 [29] Original architecture 108.8 25
AlexNet [4] Original architecture 240 61
MobileNets-v1 [27] Compact architecture 68 4.2
SqueezeNet [26] Compact architecture 4.8 1.2
DeepCompression [6] Compression (AlexNet) 6.9 6.7
INQ [24] Compression (AlexNet) 2.69 6.7
Int8 Low precision (Inception-v3) 24.7 25

Algorithm 1 Proposed Compression Method (DNS + INQ +
DEFLATE) with Adversarial Training

Input: training data with adversarial examples X, pre-trained
full-precision CNN model {Wl : 1 ≤ l ≤ L}

Output: quantized weights {Ŵl : 1 ≤ l ≤ L} in values to
be either powers of two or zero, codebook hl = {0, ..., 2b}
mapping to Ŵ in encoded form.
Ŵ← DNS(Wl)
Initialize A

(1)
l ← ∅, A

(2)
l ← {Ŵl(i, j)}, Tl ← 1, for

1 ≤ l ≤ L
for n = 1, ..., N do

Reset base learning rate and the learning policy
Based on σn, perform layer-wise weight partition and

update A
(1)
l ,A

(2)
l and Tl

Based on A
(1)
l , determine P

(1)
l

Quantize weights in A
(1)
l based on [24]

Retrain and update weights A
(2)
l : 1 ≤ l ≤ L

Update Ŵl in-place w.r.t A
(1)
l , A(2)

l

end for
for n = 1, ..., L do

Generate codebook index for quantized Ŵl

end for
return DEFLATE(Ŵ,h)

approach, we use the DEFLATE (LZ77 + Huffman) method
for compression instead of standard Huffman encoding. The
DEFLATE method is a widely supported method for lossless
compression. In practice, this method has widely been used by
standard consumer hardwares such as System on Chips (SoC)
for fast compression and decompression.

The DEFLATE method consists of two phases: duplicate
string removal and bit reduction. Duplicated series of bytes
spotted are back-referenced, linking the current series of
bytes to the previous location. This operation is performed
using a sliding window. Huffman coding is then used for bit
reduction. Essentially, a series of bytes which appear more
often are represented by the shorter sequence of bits. In our
case, the higher the frequency weights are represented by a
shorter bit length. This representation are composed using a
Huffman tree which predetermines the sequence of codes when
reconstructed.

V. EXPERIMENTAL SETUP

In this section, the network models and datasets that we
use in our experiments are explained. ImageNet Scale Visual
Recognition Challenge 2012 (ILSVRC 2012) [30] is used as
the dataset for training and validating all of CNN models.
Currently this is one of the largest publicly available dataset
consists of 1.2 million training images, 1,000 object classes,
and 50 thousand validation images. The classes are annotated
and verified via Amazon Mechanical Turk workers. Using
center crops of validation and training images as suggested
in [4, 5], we train the models from the ground up if a pre-
trained model is not publicly available. The CNNs used in this
experiment are:
• Compressed models: Two pre-trained AlexNet models,

one compressed using DeepCompression and the other
compressed using Incremental Network Quantization
method (INQ)

• Compact models: SqueezeNet and MobileNets-V1
• Low precision model: Inception-V3, both weights and

computations converted to 8-bit integer values
We use open source frameworks of Caffe [31] and Tensor-

flow in all experiments. We use Caffe models obtained from
“Caffe model-zoo”1. A Tensorflow-based library for adversar-
ial attack ’Cleverhans’ [32] is used to generate all adversarial
images in robustness evaluations. For CNN models which
have no publicly available pre-trained Tensorflow models (e.g.,
AlexNet), the model weights are converted into Tensorflow
from Caffe model using a free and open-source library 2.
We verified the converted Tensorflow models prior using in
experiments with ImageNet validation dataset. All the results
are reported in two standard metrics, namely top-1 and top-5
accuracy. We conduct our experiments on an Ubuntu 16.06
LTS machine powered by an Intel(R) Core(TM) i9-7900X
CPU @ 3.30GHz CPU and NVIDIA GTX 1080 Ti SLI GPU.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the performance of different network models
against adversarial images are demonstrated. All models in
the experiments are pre-trained with ImageNet dataset. We
report the accuracy with respect to the ImageNet validation
dataset consisting of 50,000 images. The ε value of FGSM
method is set to 2. One of an interesting issue in generating
the adversarial examples is known as label leaking effect [28].

1https://github.com/BVLC/caffe/wiki/Model-Zoo
2https://github.com/ethereon/caffe-tensorflow
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An adversarially trained CNN model can learn to exploit
regularities in the adversarial example generation process if
the true labels of images are used in the adversarial image
generation using a single-step attack technique such as FGSM.
This gives us incentives to construct adversarial examples
without using ground truth labels. To handle this issue, we
utilize the class corresponding to the maximum prediction
probability instead.

We lists the models used in our experiments in Table I. Int8
model is a network obtained from a pre-trained Inception-v3
model by converting both weight matrices and computations
into 8 bit integers using a Tensorflow3 framework.

A. White-box attacks

White-box attacks is an evaluation where the attacked CNN
model is also used to generate the adversarial examples. For
example, to evaluate the accuracy of an Inception-v3 model
on ImageNet, we generate adversarial images with ImageNet
validation dataset using the same Inception-v3 model. Table II
shows the accuracy of each model against white-box attacks.

Among all AlexNet-based model, Table II shows that our
proposed model is more robust against white-box adversarial
attacks. It obtains higher accuracy on clean images as well
as adversarial examples generated using FGSM and BIM
techniques compared to the original and other AlexNet-base
compressed models.

TABLE II: Accuracy on white-box attacks using FGSM and
BIM

Model Clean images FGSM BIM

Inception-v3 Top-1 0.7717 0.4279 0.3225
Top-5 0.9351 0.7220 0.6917

MobileNets-v1 Top-1 0.7048 0.1604 0.0016
Top-5 0.8941 0.4084 0.0057

SqueezeNet Top-1 0.5750 0.2184 0.2984
Top-5 0.8030 0.3928 0.5224

AlexNet-based Model

Original Top-1 0.5724 0.2912 0.2492
Top-5 0.8023 0.5076 0.4540

DeepComp Top-1 0.5624 0.2684 0.2580
Top-5 0.7968 0.5040 0.4708

INQ Top-1 0.5739 0.2460 0.2880
Top-5 0.8046 0.4496 0.5104

Ours Top-1 0.5818 0.3364 0.3620
Top-5 0.8135 0.5648 0.6008

B. Black-box attacks

In black-box attacks, we generate the adversarial examples
using one model to attack all other models using the generated
adversarial images. Akin to white-box attacks, FGSM and
BIM methods are used to generate the adversarial examples.
However, we observed that the effectiveness of BIM method
for black-box attacks is low as reported by [28]. Thus,
we limited our investigation on transferability exclusively to
FGSM. In low precision model such as Int8, because both

3https://www.tensorflow.org/performance/quantization

matrix multiplications and network weights of Inception-V3
are converted to 8-bit integers, it is not possible to calculate
gradients of the Int8 model. Hence, we only evaluate the
robustness of low precision Int8 model on black-box attacks.

Table III shows the accuracy on adversarial images gen-
erated using FGSM method. We can observe that all CNNs
models show high transferability of adversarial images. One
disctinct exception is that the sparse model obtained using
incremental quantization (INQ) exhibiting higher accuracy
than the original AlexNet model on both adversarial attacks.
Each diagonal cell in Table III represents the accuracy of
a model on adversarial images generated with itself, hence
the white-box attacks. Rest of the cells show the accuracy of
black-box attacks. Our results exhibit that all the networks we
used are vulnerable to both white-box and black-box attacks.

C. Robustness of Smaller Models

We measure the vulnerability of a model using the following
formula.

V ulnerability =

(accuracy on ImageNet)− (accuracy on adversarial examples)
(accuracy on ImageNet)

(7)

The vulnerability of each model as heat-maps are shown in
Figures 2a and 2b. Each diagonal cell represents the model
accuracy on adversarial images generated by the same model,
hence the white-box attacks. Rest of the cells show the result
of accuracy on images under black-box attacks.

MobileNets and SqueezeNet models exhibit the maximum
deviation of accuracy performance for white-box attacks.
According to the results, MobileNets model can not correctly
label 84% of the adversarial images generated by its own
model parameters. Even though MobileNets model achieves
a comparable accuracy performance for clean images, it per-
forms much worse when it is attacked by adversarial images.
We believe that the low model capacity of MobileNets network
compared to Inception-V3 as the factor contributing to higher
vulnerability to adversarial attacks. Interestingly, the low-
precision Int8 model performed almost similar to its full-
precision Inception-V3. Even though it is not possible to
do a direct white-box attack for Int8 model, the adversarial
images generated using Inception-V3 can reduce the accuracy
significantly.

An essential insight we can obtain from this results is that
the compression of pre-trained full size networks gives us
smaller networks with a relatively low impact on robustness
compared to compact models trained from scratch. Investi-
gating why compact CNN models show higher vulnerability
to white-box attacks is an interesting research direction which
may shed light on how to design more robust compact models.

D. Compression Rate

We compare our proposed compression algorithm against
PAQ8[33], Deep Compression and INQ[24] as baseline com-
pression methods. PAQ8 is agnostic to file structures and
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TABLE III: Accuracy on adversarial images

Target Model

Source Model Inception AlexNet DeepComp. INQ Sq.Net MobileNets Int8

Inception Top-1 0.4279 0.3288 0.3132 0.3320 0.2624 0.4417 0.3176
Top-5 0.7220 0.5432 0.5396 0.5604 0.4848 0.7006 0.5920

AlexNet Top-1 0.5246 0.2912 0.2808 0.2704 0.2296 0.3960 0.5124
Top-5 0.7543 0.5076 0.5012 0.4908 0.4528 0.6346 0.7360

DeepComp. Top-1 0.5257 0.2888 0.2684 0.2724 0.2400 0.3910 0.5133
Top-5 0.7493 0.5200 0.5040 0.4988 0.4488 0.6278 0.7368

INQ Top-1 0.5163 0.2676 0.2532 0.2460 0.2320 0.3768 0.4947
Top-5 0.7343 0.4868 0.4804 0.4496 0.4320 0.6162 0.7240

SqueezeNet Top-1 0.5980 0.2836 0.2720 0.2812 0.2184 0.4410 0.5559
Top-5 0.8088 0.4988 0.5028 0.5068 0.3928 0.6902 0.7932

MobileNets Top-1 0.4630 0.2400 0.2252 0.1868 0.1864 0.1604 0.4527
Top-5 0.7366 0.4556 0.4400 0.3848 0.3904 0.4084 0.7216

Fig. 2: Vulnerability on adversarial images generated using FGSM

TABLE IV: Compression on AlexNet based on various approaches. P denotes pruning, Q denotes Quantization, H denotes
Huffman Encoding and D denotes DEFLATE.

Methods Compression Rate Top-1 Error % Top-5 Error % Size (MB)

Original - 42.76 19.77 240
PAQ8 (P+H) 38x 42.70 19.67 6.3
DeepCompression (P+Q+H) 35x 43.76 20.32 6.9
INQ (P+Q) 89x 42.61 19.54 2.69
Ours (P+Q+D) 90x 41.82 18.65 2.64

employs ensembles learning approaches for lossless compres-
sion [33]. When compared to Deep Compression, the baseline
compression reports a compression rate of 38× without any
structural knowledge of the weight matrix. In INQ, [24] reports
a compression rate up to 89× when represented in 3-bit
storage format. Our compression method obtains a slightly
better compression rate when DEFLATE is used. We show
the full results as presented in Table IV.

Overall, our method obtains an improved compression
rate of 1× compared to the state-of-the-art. Furthermore,
it achieved an increased in performance of 1% for Top-5

accuracy and Top-1 accuracy. Given the fact that only us who
use the adversarial training, we hypothesize that the increase in
accuracy performance could be related to adversarial training
behaving as a model regularizer.

VII. CONCLUSION

In this work we investigated the robustness to adversarial
attacks of compressed and compact Convolutional Neural
Networks (CNNs) models trained on ImageNet. Two popular
methods of adversarial image generation called FGSM and
BIM, are used in our robustness evaluation. From the experi-
mental result on various CNN models, we observe that smaller
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models (compressed and compact CNNs) are as vulnerable
as their state-of-the-art full sized counterparts. One important
insight we found from this experiment is that compact models
trained from scratch such as SqueezeNet are more vulnerable
to adversarial attacks compared to compressed version of full
sized pre-trained models. We believe that the high redundancy
of network parameters coupled with regularization methods
such as dropout makes the larger CNNs architectures more
robust to input perturbations. Furthermore, based on experi-
mental results, we highlight that the robustness to adversarial
attacks should be used as an evaluation metric in addition to
accuracy in any deep network compression approaches.
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