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Abstract. Data on rice production is crucial for planning and monitoring national food security in a 

developing country such as Indonesia, and the classification of the growth phases of rice plants is 

important for supporting this data. In contrast to conventional field surveys, remote sensing 

technology such as Landsat-8 satellite imagery offers more scalable, inexpensive and real-time 

solutions. However, utilising Landsat-8 for classification of rice-plant phase required spectral pattern 

information from one season, because these spectral patterns show the existence of temporal 

autocorrelation among features. The aim of this study is to propose a supervised random forest 

method for developing a classification model of rice-plant phase which can handle the temporal 

autocorrelation existing among features. A random forest is a machine learning method that is 

insensitive to multicollinearity, and so by using a random forest we can make features engineering to 

select the best multitemporal features for the classification model. The experimental results deliver 

accuracy of 0.236 if we use one temporal feature of vegetation index; if we use more temporal features, 

the accuracy increases to 0.7091. In this study, we show that the existence of temporal 

autocorrelation must be captured in the model to improve classification accuracy.  

 

Keywords: rice-plant classification, temporal autocorrelation, temporal features engineering, random 

forest, Landsat-8 

 

1 INTRODUCTION 

Food-crop monitoring is important 

to answer the second goal of the SDGs, 

that is zero hunger. Rice is a vital 

commodity in Indonesia’s food security 

programme, and achievement of this goal 

encourages rice-plant monitoring to 

support food security. Rice-plant 

monitoring has been conducted by BPS-

Statistics Indonesia using conventional 

surveys based on framework sample 

areas (FSA)/ kerangka sampel area 

(KSA). Rice-plant phase data are 

collected every month for the selected 

KSA sample. 

In addition to conventional data, 

free remote sensing data from Landsat-8 

imagery can be obtained quickly and can 

be used to monitor rice-plant phase. This 

remote sensing data has been utilised in 

various fields, such as agriculture, where 

remote sensing data is used for rice-

growth models (Parsa, Dirgahayu, 

Manalu, Carolita, & Harsanugraha , 

2017), land cover classification (Kussul 

et al., 2017; Tong et al., 2018), crop type 
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classification (Azar et al., 2016), crop 

yield estimation (You, Li, Low, Lobell, & 

Ermon, 2017), and paddy rice mapping 

(Zhang, Zhang, & Zhang, 2018;  Qiu, Lu, 

Tang, Chen, & Zou, 2017; Guan, 

Huang, Liu, Meng, & Liu, 2016). 

Landsat-8 provides rich spatio-

temporal features to support the 

detection of vegetation and plant-related 

indices. However, when analysis is 

carried out on all of the pixels in the 

images, the amount of data becomes 

large and unstructured. For this type of 

data, machine learning is recommended, 

because it will be difficult to devise 

models manually. It is also necessary to 

add temporal spectral patterns from one 

season to reduce the misclassification 

which may occur. This spectral pattern 

occurs because the vegetation index 

value of a period is influenced by the 

previous period, and this indicates the 

existence of temporal autocorrelation in 

features that must be treated to improve 

model accuracy. 

In contrast to conventional field 

surveys that require large amounts of 

human and capital resources, we explore 

more scalable, inexpensive, and real-

time methods using publicly available 

remote sensing data. In this study, we 

propose a supervised random forest 

method for features engineering to select 

the best multitemporal features for the 

classification of rice-plant phase. 

Random forest is a machine learning 

method that is not sensitive to 

multicollinearity. By using random 

forest, temporal features engineering can 

be derived as far as possible, from which 

the best features are selected using the 

variable importance plotting (varimplot) 

function. 

In this study, we focus on the 

classification of rice-plant phase in 

Banyuwangi Regency, Indonesia, as a 

case study. The ground truth data are 

the monthly KSA data for rice-plant 

phase at regency level officially released 

by BPS-Statistics Indonesia. 

  

2 MATERIALS AND METHODOLOGY 

2.1   Location and data 

This study was carried out in 

Banyuwangi Regency, which is one of the 

‘rice barns’ of East Java Province. The 

distribution of sample locations can be 

seen in Figure 2-1. 

 
Figure 2-1: Location of KSA Sample 

 

2.2  Label data and features 

The label data used in this study 

follows the randomness principle 

because it is drawn from the KSA survey. 

The observations are grouped into nine 

classes: (1) early vegetative; (2) late 

vegetative; (3) early generative 

(reproduction); (4) harvest; (5) bare/land 

preparation; (6) puso; (7) non-rice in 

paddy fields; (8) non-rice fields; and (9) 

late generative (ripening). 

The basic features used in this 

study are band 1 (coastal/aerosol), band 

2 (blue), band 3 (green), band 4 (red), 

band 5 (near infrared [NIR]), band 6 

(shortwave infrared [SWIR] 1), band 7 

(SWIR 2) from selected Landsat-8, and 
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four vegetation indices, namely 

Enhanced Vegetation Index (EVI), 

Normalised Difference Water Index 

(NDWI), and Normalised Difference Built-

Up Index (NDBI). This vegetation index 

was chosen based on Pusfatja LAPAN's 

research, in which EVI, NDWI and NDBI 

are used to detect rice-plant phase 

(Dirgahayu et al., 2015).  

EVI is used to detect the green 

level. NDBI captures open/fallow land 

information which usually has a higher 

reflection in the SWIR area than NIR. For 

the rice-plant phases, NDBI is used to 

detect harvested land that still has crop 

residues and NDWI detects standing 

water. NDWI is used for early planting 

when the rice fields are still flooded. 

 

if red < NIR or blue < red 

 

(2-1) 

If other: 

 

 

   

                  

                   

(2-2) 
 
 
(2-3) 

 

 

(2-4) 

 

2.3  Temporal spectral patterns for 

features engineering 

From several studies conducted by 

Pusfatja LAPAN of satellite imagery used 

to detect rice-plant phase, it was found 

that there was a spectral pattern for the 

EVI values in one rice-planting period 

(Dirgahayu, Noviar, & Anwar S, 2014). 

The spectral pattern found that during 

the early phase of planting it is 

estimated that NDWI value is high while 

NDBI and EVI values are low. In the late 

vegetative period, the NDWI value 

decreases and EVI rises to a maximum 

level then the decreases again in the 

early generative and late generative 

phases until harvest. At the time of 

harvest, it is estimated that NDBI is high 

and NDWI is low. Besides EVI, vegetation 

indices that are commonly used to detect 

greenness are Normalized Difference 

Vegetation Index (NDVI). Seen that the 

spectral pattern of NDVI looks like EVI 

(Figure 2-2). 

 

 
Figure 2-2: Examples of spectral patterns in 

EVI, NDVI, NDWI, NDBI From 21 Landsat 

periods in 2018: (A) lowland rice plants, (B) 

non-rice in paddy fields 

 

2.4  Random forest 

‘Random forest’ (Breiman, 2001) is 

the development of classification and 

regression trees (CART) by applying 

bagging and random features selection 

which randomly selects several features 

in each iteration. So many trees are 

produced by the iterations that the 

outcome resembles a ‘forest’. The 

classification decision is taken from the 

most votes among the trees (Hastie, 

Tibshirani, & Friedman, 2009). The 

stages in producing a random forest are 

as follows: 

1. Bootstrapping: taking a 

number of samples with replacement of 

the training set. 

2. Subsetting: the selection of 

p features as a baffle to build a tree in 

which the value of p < q with q being all 

the features that exist. The selection of 

various p sizes allows better prediction 

http://www.symphonygeo.com/blog/18-ndvi-normalized-difference-vegetation-index
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results if using different p values. The 

random forest parameter setting in this 

study uses the default random forest 

package and the default value for p is √q. 

3. Repeat steps 1 and 2 until 

a tree is obtained. 

4. The final prediction is the 

majority vote of all the trees. 

Random forest method was chosen 

for this study because it can handle 

large amounts of data, is not sensitive to 

multicollinearity and so enables the 

modelling process to include as many 

variables as possible, is fast and not 

sensitive to overfitting, and can choose 

any explanatory variables that affect the 

predictions, using the varimplot 

function.  

 

2.5  Classification approach 

The classification framework in this 

paper is implemented as follows: 

Step 1: Using Google Earth Engine, 

download Multitemporal Landsat 8 data 

corrected geometrically and 

radiometrically for cloud cover over 50 

per cent and cloud shadow over 30 per 

cent. Landsat 8 data has NA value if 

there is cloud cover. There is no special 

treatment for this because random forest 

is a method that can handle NA value 

data. The Landsat 8 data downloaded 

consists of bands 1 to 7. 

Step 2: Extract features for bands 1 

to 7 with a grid size of 100m x 100m 

according to the coordinates of the KSA 

sample. Then add KSA label data so that 

the research sample data sets are 

obtained. 

Step 3: Pre-process missing data, 

NDVI, EVI, NDBI and NDWI. From seven 

band features and four indices, we create 

temporal features such as band 1 period 

t to band 1 period t-4 (if period t is early 

June, then t-1 is the mid-May period 

etc.). We create this temporal feature for 

all of the bands and vegetation indexes. 

Then we create the feature differences 

between periods and features from the 

regression line. For example, from EVI, 

we create EVI period t to EVI period t-3; 

then mean, minimum, maximum, 

varian, and regression EVI from 4 

periods.  

Step 4: Perform data exploration to 

identify whether the temporal spectral 

pattern of vegetation index matches our 

theory or not. 

Step 5: Split the data into training 

data and testing data with a proportion 

of 70:30. Train the random forest model 

in the training data and then evaluate 

using the testing data. Perform model 

experiments using temporal features, 

feature differences between periods, and 

features from the regression line. This is 

intended to capture spectral patterns or 

overcome the presence of temporal 

autocorrelation in the vegetation index. 

Step 6: Evaluate the classification 

model of the experimental results. 

Analyse important features in the rice-

plant phase classification model using 

the varimplot function. 

 

2.6 Challenges in rice-plant 

classification 

One of the main challenges in the 

classification of rice-plant phase in 

Indonesia is how to identify Landsat 8 

data that can distinguish between rice 

and non-rice plants. The problem here is 

that the vegetation index for a period is 

only a greenness index, without any 

information about whether the plants are 

rice or non-rice. For example, in a rice 

field, there are three planting periods in 

one year, in that rice is planted in two 

periods and then interspersed with soya 

beans or corn once. If the EVI index 

obtained is 0.4, it cannot be ascertained 

whether the EVI shows green for rice or 

for non-rice (e.g. soya  or corn). However, 

if we add information from the previous 

period it is expected that the information 

can show whether the plants are rice or 



Classification Of Rice-Plant Growth… 

International Journal of Remote Sensing and Earth Science Vol.  16 No. 2 December 2019  85 
 

non-rice. The second challenge is that in 

large areas with small rice fields there 

are interspersed fields planted with 

various types of rice and non-rice plants 

with varying initial plantings. The third 

challenge is that the types of rice planted 

in Indonesia are very diverse and there 

are different spectral patterns among 

these types of rice. 

 

3    RESULTS AND DISCUSSION 

3.1   Data exploration 

The exploration of boxplots shows 

information about band or vegetation 

index for the t period which is expected 

to differentiate between classes. It can be 

seen from the boxplots that NDVI is the 

most differentiated (class 2: late 

vegetative) compared to other classes. 

However, the value of class 2 is quite 

close to the value of class 9 (final 

generative). For the EVI index, the late 

vegetative class is also the most different 

from the other classes.  

This inter-class boxplot shows that 

the spectral pattern for rice-plant phase 

is exactly like the rice-growth model 

developed by the Pusfatja LAPAN. It 

appears that the NDWI value at the 

beginning of planting in the early 

vegetative class is much higher than the 

value of the other class of NDWI. 

Meanwhile, the NDBI value that shows 

open land starts higher in phase 4 

(harvest) and then increases further in 

phase 5 (fallow/land preparation). In 

class 7 (non-rice paddy fields), the NDWI 

is quite low and NDBI is quite high. This 

is consistent with the profile of non-

paddy fields in Banyuwangi, which is 

dominated by corn and soya beans. 

 

3.2   Accuracy and misclassification 

Temporal feature experiments were 

carried out in three stages. The first 

stage is classification using one period 

features. The second stage uses two to 

four period features and the difference 

between periods to capture information 

on temporal spectral patterns for one 

season. The third stage uses the 

derivative features of the polynomial 

regression line performed at pre-

processing.  

The first stage classification was 

carried out using EVI for one period. 

When classification only used EVI for 

one period, the classification accuracy of 

the testing data was 0.2364. 

Misclassification often occurred between 

classes. For example, in the early 

vegetative class from 25 samples of 

testing data, only eight were correctly 

classified. 

When the classification used EVI, 

NDWI and NDBI, classification accuracy 

increased to 0.4727, because there has 

been the decreasing misclassification in 

classearly vegetative class and non-rice 

fields. All fallow classes were still 

classified incorrectly.  

Subsequent experiments were 

carried out with the addition of bands 1 

and 7. These bands were not used in 

EVI, NDVI, NDBI and NDWI, so there 

was still information available that could 

be derived to capture vegetation signals. 

The classification results using band 1, 

band 7 and the four vegetation indices 

increased accuracy to 0.5636. This 

means that there is information from 

bands 1 and 7 that is useful for 

classifying rice-plant phase.  

Based on the suspicion that bands 

2 to 6 also contain information relating 

to plant phase, bands 2 to 6 were added 

to the model. Classification accuracy 

increased to 0.5727 with the best 

features being in band 1, NDWI, band 6, 

EVI, NDVI, band 5, band 7, NDBI, band 

2, band 4, and finally band 3. 
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 Figure 3-1: Distribution of band and vegetation index value per class period t 

 

 

Based on the results of the experiment in 

stage 1 using one period features, the 

classification model with supervised 

random forest still cannot distinguish 

between classes of rice-plant phase. To 

help the model differentiate phases 

between classes, the second stage of the 

experiment using temporal features was 

carried out. 

 

Table 3-1: Comparison of confusion matrix and 

classification model accuracy with some 

features 

Features: EVI 

 Reference 
Prediction 1 2 3 4 5 7 8 9 

1 8 0 0 0 3 0 5 0 
2 1 5 5 2 0 2 6 0 
3 2 1 1 0 0 1 1 0 
4 4 0 0 0 1 4 0 0 
5 2 0 0 0 0 2 1 0 
7 4 1 1 2 1 4 16 0 

8 4 4 4 4 1 2 9 0 
9 0 0 0 0 0 0 0 0 

Overall accuracy: 0.2364 

 

 

Features: EVI, NDWI, NDBI 

 Reference 
Prediction 1 2 3 4 5 7 8 9 

1 14 0 1 1 2 0 1 0 
2 2 5 3 0 0 0 1 0 
3 3 0 1 1 0 0 1 0 
4 0 0 0 2 1 2 0 0 
5 0 0 0 0 0 0 0 0 
7 3 1 1 2 0 7 11 0 
8 3 5 1 2 3 6 23 0 

9 0 0 0 0 0 0 1 0 

Overall accuracy: 0.4727 

 

Features: 3 periods of band and vegetation 
index, the difference of vegetation index over 4 

periods, coefficient regression EVI, maximum 
and minimum EVI over 4 periods 

 Reference 

Prediction 1 2 3 4 5 7 8 9 

1 17 0 1 1 1 0 1 0 
2 3 10 3 0 0 0 0 0 
3 2 0 0 0 0 0 0 0 
4 0 0 1 5 1 2 0 0 
5 0 0 0 0 0 0 0 0 
7 2 1 2 1 2 11 2 0 
8 1 0 0 1 2 2 35 0 
9 0 0 0 0 0 0 0 0 

Overall accuracy: 0.7091 
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Classification accuracy increases 

when temporal features are added into 

the model. The classification accuracy 

using features of two periods, bands and 

vegetation index increased to 0.6364. 

The highest accuracy is 0.7091. 

Misclassification in the early vegetative 

class, late vegetative class, harvest and 

not-rice fields decreases. For the 

classification using features for two 

periods the increasing misclassification 

of non-rice in rice fields should be noted. 

This indicates that accuracy increases 

because the misclassification of some 

classes decreases, but the model is less 

able to distinguish between rice and 

non-rice in rice fields. 

In class 5, all samples are not 

correctly predicted. This shows that the 

features used have not been able to 

capture the pattern of class 5. Class 5 

consists of fallow after harvest (open and 

dry land) and land preparation 

conditions (flooded with water) so that 

class 5 is still classified as early 

vegetative, harvested and non-rice field 

classes. The early vegetative 

characteristic is the amount of standing 

water and the harvest characteristic is 

open, dry land, and both are similar to 

the conditions in the fallow class. Several 

experiments have been conducted to 

identify features to distinguish 

fallow/land preparation from early 

vegetative and harvest classes, but such 

features have yet to be found. If only 

using one feature, band 5 can classify 

fallow/land preparation class correctly; 

however, band 5 is not strong enough to 

catch fallow/land preparation classes. 

Samples in class 3 are still 

misclassified as class 2. The problem is 

that because of the 16-day Landsat-8 

period, there is the possibility of 

observing the t period at the beginning of 

class 3 and the t-1 period in class 2. 

When these conditions occur, the EVI 

difference becomes negative as a feature 

of class 2. As a consequence, when the 

EVI difference is added to the model, 

there is an increasing misclassification of 

class 3 as class 2. 

 

3.3 The best differentiating features  

In general, the best features that 

distinguish rice and non-rice classes are 

NDWI variations, EVI variations, band 1, 

NDBI variations, NDVI variations and 

band 2. The value of the four vegetation 

indices varies considerably in rice 

classes due to growth in one planting 

period, while the variation in the 

vegetation index in the non-rice class is 

relatively stable. Band 1 is usually used 

in coastal studies. It is possible that in 

this study, band 1 was one of the best 

features for distinguishing between rice 

and non-rice because the observation 

KSA in the coastal area fell on non-rice 

classes such as ponds. 

 

 

Figure 3-2: Findings of the best distinguishing 

features of a proposed model with random 

forest. (Left: rice classification and non-rice 

classification. Right: classification of rice-plant 

phase) 

 

The best distinguishing features in 

the rice-plant phase classes are band 5, 

maximum and minimum EVI in four 

periods, band 6, and NDWI variations. 

Band 5 and band 6 have been 
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normalised to NDBI. However, 

apparently, the original value of the two 

bands is still a better differentiator than 

NDBI. It is suspected that the NDBI 

index still needs correction, or another 

form of normalisation from band 5 and 

band 6 is needed. 

Figure 3-2 shows that 

classifications for different classes 

require different types of features. For 

the classification used to distinguish rice 

fields and non-rice fields, it is better to 

use feature variations of vegetation index 

rather than vegetation index. An example 

of the classification of rice fields and 

non-rice fields can be seen in Figure 3-3 

and an example of maximum EVI class 

in rice fields can be seen in Figure 3-4. 

 

 

It can be seen from Figure 3-3 that 

misclassification still occurs. The 

example of misclassification is houses 

being classified as rice fields, trees being 

classified as rice fields, and vice versa. 

Another error occurs due to the pixel 

scale, so that the border areas are 

classified according to the highest value 

of the pixel region.  

The classification of rice fields in 

Banyuwangi based on the maximum EVI 

class can be seen in Figure 3-4. It 

appears that most of the rice fields in 

Banyuwangi are in the high EVI class. 

The highest value of maximum EVI is 

usually related to rice productivity. This 

is in accordance to Banyuwangi's 

position as the fourth-largest producer of 

rice in East Java. The greenest areas are 

in the Pesanggaran and Tegaldlimo 

districts, which are sub-districts with 

high rice productivity. 

 

 

 

Figure 3-3: Rice field and non-rice field 

classifications 

Figure 3-4: EVI maximum class for rice 

fields 
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Figure 3-5: Example of rice-plant phase 

classification from random forest model 

 

4 CONCLUSION 

In this study, intensive 

experiments have been carried out using 

the random forest method to investigate 

the best multitemporal features for the 

classification of rice-plant phase. Some 

important points can be summarised as 

information to improve rice-plant phase 

classification: (1) classification accuracy 

increases when temporal features are 

included in the model; (2) the highest 

accuracy is in classes 1, 2 and 8 because 

all of these classes have special 

characteristics distinguishing them from 

other classes; (3) the lowest accuracy is 

in class 3 and class 5, with class 3 being 

still classified into class 2, and class 5 

being still misclassified as class 1 and 4, 

because it consists of dry and wet fallow 

conditions. 

As input for further research, 

studies could focus on: (1) class 5 being 

divided into wet fallow and dry fallow 

classes, or increasing the number of 

samples and looking for other features 

that can capture both of these classes; 

(2) increasing the number of class 3 

samples and identifying more sensitive 

features which could be used distinguish 

class 3 from classes 2 and 4; (3) 

developing methods that not only read 

the maximum and minimum values of 

vegetation indices in four periods, but 

also accommodate positions of lag, as it 

is expected that such a model would be 

better able to capture temporal spectral 

patterns and accuracy would be 

improved; (4) other satellite images with 

a short period could be added to obtain 

information about maximum and 

minimum turning points, so the EVI 

difference between t-periods and t-1 

periods becomes more reflective of the 

condition of each class. 
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