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summary

Small area estimation (SAE) models have been widely used by statistician and 
policy maker to get small area statistics. The models based on normal distribu-tions 
(normal-SAE) may perform poorly in estimation when data contains out-liers. A 
robust method can be used to solve this, such as using Huber function or replacing 
normality assumption with t-distribution. The robust Huber can well overcome the 
area level outliers. However, the outliers arise from unit level or/and area level. 
Thus, we propose a robust SAE that handles these types of outliers by assuming t-
distributions in both sampling errors and random effects (t-SAE). The inference was 
built using the likelihood approach. An expectation conditional maximization 
(ECM) algorithm was presented on getting its para-meters model estimation. The 
simulation study showed that the t-SAE model had better performance than 
normal-SAE and model based on Huber function when the data contained both unit 
and area level outliers. We have applied the proposed model for estimating per 
capita household expenditure at sub-districts in Bandung city, Indonesia. It results 
a better estimates. Thus, we recommend using the robust t-SAE that is proposed for 
handling the unit and area level outliers.

Keywords and phrases: area level model; t-distribution; unit and area level out-
liers; robust extension of SAE; adapted t-t linear mixed model; ECM algorithm.

2010 Mathematics Subject Classification: Primary 62F10, secondary 62J12, 62P20.

1 Introduction

The average of per capita expenditure as a measure of the well-being in a region is quite

important in government policy making in developing countries. The official statistics In-

donesia used data from National Social Economic Survey (SUSENAS) to produce this wel-

fare indicator for national, provincial or district levels. Until now, it does not produce for



sub-districts because of expensively. However, such data is very important for local policy.

In this case, direct estimators from survey data might have large sampling errors. Therefore,

the estimations become inefficient because of the small samples sizes. This is known as a

small area.

The small area estimation models (SAE) are widely used to provide small area statistics

because of its efficiency. These models use survey data from related areas through a linking

model, thus increasing the ”effective” sample size [18]. It means, without having to increase

sample size, SAE models can produce estimators with a higher precision than direct estima-

tors. These models use survey data as a response variable and borrow strength the census

or administrative data as auxiliary variables to get parameter estimators in small areas.

Based on the availability of auxiliary variables, there are two types of small area models:

unit and area level. A unit level model relates the unit values of the study variable to unit-

specific auxiliary variables, but such data are rarely available. While an area level model

relates the small area means to area-specific auxiliary variables (aggregated data), (see [18]

for more detail). We focus here on the area level models, because the auxiliary variables in

aggregate are more accessible.

The basic area level model was introduced by Fay and Herriot [9] and can be written as,

yi = θi + ei = xTi β + ui + ei, i = 1, 2, . . . ,m, (1.1)

where yi is a direct estimate of i-th small area parameter θi with m small areas, obtained

from survey and θi is assumed to have a linear relation to some p auxiliary variables xTi =

(x1i, x2i, . . . , xpi), random effects ui and sampling errors ei are commonly assumed have

normal distributions ui
iid∼ N(0, σ2

u), ei
iid∼ N(0, σ2

ei), and σ2
ei are assumed known from

sampling variances. Next, we call this model (1.1) as normal-SAE models.

The normal distribution is very sensitive to outliers since the influence function of the

estimators under normal distribution is a trend line and unbounded [14, 17, 23, 25]. A

simple way to solve this problem is to remove these outliers from the data, but this kind of

practice is not recommended because the cost of data collection is very expensive and we

can also lose some information. Another technique is to use the log-transformation method

[22], but sometimes can be quite problematic, such as it can generate inaccurate estimates

[10]. Other methods that can handle outliers and also provide accurate estimate is robust

models.

Broadly, in the existing literatures, there are three approaches in the robust SAE models,

for instance, firstly by using influence functions i.e Hubers function (we call this as robust-

SAE Huber). This model have been studied by Sinha and Rao [21] in context unit level

models. Warnholz [26] adapted this model for area level models and showed that this model

effectively overcomes area level outliers. Secondly, by using M-quantile regression see for

examples [5]. The third, by replacing the normal distribution with heavy tailed distributions.

In context Hierarchical Bayesian framework, Datta and Lahiri [7] recommended a scale

mixture of normal distributions specifically Cauchy distribution for random effects, Xie et al.

[29] used a t-distribution with an unknown degrees of freedom parameter and Chakraborty
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et al.[4] used a two-component mixture normal model.

Bell and Huang [3] said that there are two types of outliers in area level models, such as,

unit level outliers (that one or some units within an area are outlying) and area level outliers

(that all units within an area are outlying). However, they realized that it was difficult to

specify which type of outliers were observed. Therefore, they assumed a t-distribution on

sampling error or on random effects in Hierarchical Bayes framework with known degrees

of freedom. Pinheiro et al.[17] in the context of linear mixed-effects models for longitudinal

data, also said that it may not be potential to separate these two types of outliers, so they

proposed a model in which the random effects and the within subject-errors (sampling error

in terms of SAE model) have multivariate t-distributions. In this paper, we propose the

adapted t-t linear mixed model by Pinheiro et al.[17] for small area level models.

The t-distribution is widely used in robust models because the outlying observations

are down-weighted on parameters estimation [12] and it has a bounded influence function

[14, 17, 23, 25]. Moreover, on getting parameters estimation in robust t model, Lange et al.

[12] suggested expectation maximization (EM) algorithm because of the simplicity. Liu and

Rubin [13] showed that the expectation conditional maximization (ECM) was a simple and

stable algorithm. It also has a faster rate convergence, when the degree of freedom is fixed.

So did Bai et al. [2] also suggested to be chosen of its degree of freedom. If it is estimated,

the estimate is not very accurate. Nevertheless, the use of ECM algorithm, according to

authors knowledge, has not been applied on SAE models. Thus, this study aims to apply

the ECM algorithm in parameter estimation of SAE model based on t distribution and to

analyze the robustness of this model compared to SAE models based on normal distribution

and robust Huber in term of bias and the efficiency. An empirical study of estimating

the average of per capita household expenditure is conducted to show the performance of

proposed model.

In recent years, several papers on the application of SAE method in estimating the

average per capita household expenditure have been published. Susianto et al. [24] used

the SUSENAS data for estimating in district levels, while Salma et al. [19] for sub-districts

level. They have taken data from Village Potential (PODES) as auxiliary variables. Salma

et al. [19] used unit level model and the results showed that the household expenditure data

contained outliers. They applied the robust SAE model based on Huber function to deal

with this problem. Nonetheless, the SAE Huber model is more suitable for dealing with

area level outliers [26], but such data may contains unit and area level outliers. Thus, the

proposed model is also applied to estimate the average of per capita household expenditure

for sub-district level. Then, compared it with direct estimation and other SAE models, such

as normal-SAE and its log-transformation, and robust SAE-Huber.

2 Small Area Model Based on t-Distribution

Here the t-t linear mixed model by Pinheiro et al.[17] is adapted for area level model,

yi = xTi β + ui + ei, ui
iid∼ t(0, σ2

u, ν), ei
iid∼ t(0, σ2

ei, ν). (2.1)
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We call this (2.1) as t-SAE model. According to Lucas [14], the model based on the t

distribution can be robust if the degrees of freedom is fixed. So, in this paper, the degrees

of freedom ν of the model are assumed to be known.

The model based on t-distribution can be constructed from normal - Chi-squared hier-

archical model [12] or generally, normal-gamma model [17] and the t-SAE model (2.1) can

be written as,

yi|ui, τi ∼ N(xTi β + ui, σ
2
ei/τi)

ui|τi ∼ N(0, σ2
u/τi)

τi ∼ Gamma(ν/2, ν/2),

(2.2)

where τi here is a latent variable from gamma distribution. From this model (2.2) and

according to Bayes theorem, we get some properties as follows:

• The conditional distribution of ui given yi and τi:

ui|yi, τi ∼ N

(
(yi − xTi β)

(
σ2
u

σ2
u + σ2

ei

)
,

1

τi

(
1

σ2
u

+
1

σ2
ei

)−1
)
. (2.3)

• The conditional distribution of yi given τi:

yi|τi ∼ N
(
xTi β,

1

τi

(
σ2
u + σ2

ei

))
. (2.4)

• The conditional distribution of τi given yi :

τi|yi ∼ Gamma
(
ν + 1

2
,
ν + z2i

2

)
, (2.5)

where z2i = (yi − xTi β)2/(σ2
u + σ2

ei).

• The marginal distribution of yi is yi ∼ t(xTi β,Vi = σ2
u + σ2

ei, ν) with log-likelihood:

l =

m∑
i=1

−1

2
log(σ2

u + σ2
ei)−

1

2
(ν + 1) log(1 +

z2i
ν

). (2.6)

2.1 Parameters Estimation

In small area estimations, our focus is to predict the small area characteristics θi as in

equation (1.1) which is a function of β and ui, so the latent variables of model (2.2) are

ui and τi. If the degrees of freedom ν is fixed, then the vector of parameter models is

ω = (βT , σ2
u). The log-likelihood of completed data (2.2) is

lc(ω) =

m∑
i=1

lci (ω), (2.7)

78



where

lci (ω) = ln(f(yi|ui, τi)f(ui|τi)f(τi))

= ln(f(yi|ui, τi)) + ln(f(ui|τi)) + ln(f(τi))

= − τi
2σ2

ei

(
yi − xTi β − ui

)2
− 1

2
ln(σ2

u)− τi
2σ2

u

u2i

+
ν

2
ln(τi)−

ν

2
τi + constant.

(2.8)

The ECM algorithm can be computed as follows.

E-step: compute the expected of complete data log-likelihood (2.8).

Q
(
ω|ω̂(h)

)
= E

(
lc(ω)|yi, ω̂(h)

)
=

m∑
i=1

E

(
− τi

2σ2
ei

(
yi − xTi β − ui

)2 |yi, ω̂(h)

)

+

m∑
i=1

E

(
−1

2
ln(σ2

u)− τi
2σ2

u

u2i |yi, ω̂(h)

)

+

m∑
i=1

ν

2
E
(

ln(τi)− τi|yi, ω̂(h)
)
.

(2.9)

We can see that
∑m
i=1

ν
2E
(
ln(τi)− τi|yi, ω̂(h)

)
, the third term in the right side of (2.9)

is a function of ν. When ν is known, the target is only β and σ2
u parameters, so this term

becomes a constant and can be ignored. This is in line with Lange et al. [12] and Pawitan

[16] which stated that E(ln(τi)|yi, ω̂(h)) is sought when the degree of freedom ν is estimated.

Thus, when the ν is fixed, at this stage only E(u2i |yi, ω̂(h)) and E(τi|yi, ω̂(h)) is calculated.

Given ω = ω̂(h) at h-th iteration, according to properties in equations (2.5) and (2.3)

respectively we get:

τ̂
(h)
i = E(τi|yi, ω̂(h)) = (ν + 1) /

(
ν + ẑ

2(h)
i

)
, (2.10)

where,

ẑ
2(h)
i = (yi − xTi β̂

(h)
)2/(σ̂2(h)

u + σ2
ei). (2.11)

The expectation of u2
i given yi, ω̂

(h) is:

E(u2i |yi, ω̂(h)) = E
[
E(u2i |yi, τ̂

(h)
i , ω̂(h))

]
= var(ui|yi, ω̂(h)) +

{
E(ui|yi, ω̂(h))

}2

=

(
1

τ̂
(h)
i

)
η̂
(h)
i +

(
û
(h)
i

)2
,

(2.12)
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where,

η̂
(h)
i =

(
1

σ̂
2(h)
u

+
1

σ2
ei

)−1

, (2.13)

and

û
(h)
i = E(ui|yi, ω̂(h)) = E

[
E(ui|yi, τ̂ (h)i , ω̂(h))

]
= (yi − xTi β̂

(h)
)

(
σ̂u

2(h)

σ̂u
2(h) + σ2

ei

)
.

(2.14)

CM-step: update the estimated value of ω = (βT , σ2
u) by maximizing the expected of com-

pleted data log-likelihood (2.9). It can be shown that,

β̂
(h+1)

=

(
m∑
i=1

τ̂
(h)
i

σ2
ei

xix
T
i

)−1 m∑
i=1

(
τ̂
(h)
i

σ2
ei

xi

(
yi − û(h)i

))
, (2.15)

and

σ̂2(h+1)
u =

1

m

m∑
i=1

(
τ̂
(h)
i

(
û
(h)
i

)2
+ η̂

(h)
i

)
. (2.16)

CM-1: fix σ2
u = σ̂u

2(h) and update β̂
(h+1)

(2.15).

CM-2: fix β = β̂
(h)

and update σ̂
2(h+1)
u (2.16).

Do these E-step and CM-step iteratively until the log-likelihood of marginal distribution yi
(2.6) converges to some value, then we obtain the estimate of β and σ2

u.

2.2 EBLUP Estimation

If σ2
u is known, the best linear unbiased prediction (BLUP) of θi without normality assump-

tions is defined by [8],

θ̃i = xTi β̃ + ũi = (1− Bi)yi + Bi(x
T
i β̃), (2.17)

where Bi = σ2
ei/(σ

2
u + σ2

ei) and β̃ is the estimate for β when σ2
u is known. In practice, σ2

u

is unknown, then it will be substituted by its estimator, then we get the empirical BLUP

(EBLUP) of θi:

θ̂i = (1− B̂i)yi + B̂i(x
T
i β̂), (2.18)

where B̂i = σ2
ei/(σ̂u

2 + σ2
ei).

The difference between EBLUP under normal-SAE model and t-SAE is the model pa-

rameters estimation. Under normal-SAE model (1.1), β̂ can be obtained by weighted least

squared,

β̂ =

(
m∑
i=1

1

σ2
ei

xix
T
i

)−1 m∑
i=1

(
1

σ2
ei

xi (yi − ûi)
)
, (2.19)
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and the random effect variance σ2
u can be estimated by maximum likelihood (ML), or re-

stricted (REML) or method of moment (see [18]).

Meanwhile, the proposed t-SAE model estimators (β̂ and σ̂u
2) can be obtained by using

the ECM algorithm (as described in Section 2.1). For the t-SAE model, let the values in

(2.14) and (2.15) converge respectively to,

ûi = (yi − xTi β̂)

(
σ̂u

2

σ̂u
2 + σ2

ei

)
, (2.20)

and

β̂ =

(
m∑
i=1

τ̂i
σ2
ei

xix
T
i

)−1 m∑
i=1

(
τ̂i
σ2
ei

xi (yi − ûi)
)
, (2.21)

where,

τ̂i = (ν + 1) /
(
ν + ẑ2i

)
, (2.22)

and

ẑ2i = (yi − xTi β̂)2/(σ̂2
u + σ2

ei). (2.23)

To see the robustness of EBLUP under t-SAE model, for example let us compare between

(2.19) and (2.21). We can see that β̂ under t-SAE model is a robust estimator, since the

outlying cases are down-weighted by (2.22).

3 Simulation Study

The purpose of this simulation is to investigate the robustness of EBLUP under robust

t-SAE model compared to EBLUP under normal-SAE and robust-SAE based on Huber

function. We used absolute relative biases (ARB) and asymptotic relative efficiency (ARE)

for measure the robustness. The computation is carried out by using some packages in R

software. We used saeSim package for data generating [28], sae package to get EBLUP

under normal-SAE model [15] and saeRobust package to get EBLUP under robust-SAE

Huber [27]. The method for getting EBLUP under the proposed t-SAE model can be seen

in Section 2. There is no package yet for this. However, it can be implemented easily in

standard software, such as R.

The simulated data were generated from basic area level models (1.1) and (2.1) with

several scenarios:

1. both ui and ei were generated from normal distributions,

2. both ui and ei were generated from t-distributions with 5 degree of freedom (ν = 5),

3. both ui and ei were generated from t-distributions with ν = 4,

4. both ui and ei were generated from t-distributions with ν = 3,

5. both ui and ei were generated from t-distributions with ν = 2.
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Set total of small area m = {15, 30}; xTi = (1, x1i, x2i) with {x1i = i : i = 1, . . . ,m}, and

x2i ∼ U(2, 5); β = (5, 1,−1)
T

; σ2
u = {1, 4} and the pattern of σ2

ei is {1, 3, 5, 9, 19}. Every

value in this set was taken 3 areas for m = 15 or 6 areas for m = 30.

The steps of simulation are:

1. Generate for i-th area and r-th replication, the area-specific random effects uir and

errors eir. We get samples of θir and yir without outliers by equation (1.1) when uir
and eir from normal distribution, and ones that have unit and area level outliers by

(2.1) when uir and eir from t-distribution.

2. Compute the EBLUP of θir under normal-SAE, robust Huber and t-SAE models for

several degrees of freedom ν = 3, 4, 5 (here we used REML method for normal-SAE

model, because it produced a consistent estimator of random effects variance even if

normality is violated [11]).

3. Repeat the step (1)-(2) as many R = 1000 times.

4. Compute the percentage ARB of EBLUP averaged over areas for each model,

%ARB =
1

m

m∑
i=1

ARB
(
θ̂i

)
× 100,

where

ARB
(
θ̂i

)
=

(
1

R

R∑
r=1

θir

)−1 ∣∣∣∣∣ 1

R

R∑
r=1

(
θ̂ir − θir

)∣∣∣∣∣ .
5. Compute the mean squared error (MSE) of EBLUP averaged over areas for each model,

MSE =
1

m

m∑
i=1

MSE
(
θ̂i

)
,

where

MSE
(
θ̂i

)
=

1

R

R∑
r=1

(
θ̂ir − θir

)2
.

6. Compute ARE of EBLUP under robust-SAE Huber and robust t-SAE models with

respect to the normal-SAE,

AREk = MSEnormal/MSEk,

with k is for robust Huber or t-SAE models.

The results of simulation are presented in Figure 1 and 2. Figure 1 shows the percentage

ARB of EBLUP averaged over areas under normal-SAE, robust SAE Huber and t-SAE

models with several degrees of freedoms ν = {3, 4, 5}. It shows generally that increasing the
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Figure 1: Simulated values of percentage absolute relative biased (%ARB) of EBLUP for
normal-SAE, Huber, t-SAE with several degrees of freedom (ν = 3, 4, 5)

number of areas m may reduce the ARB of EBLUP for all of the SAE models, but otherwise

the greater random effect variance will enlarge the ARB. It also shows that the robust (Huber

and t-SAE) also normal-SAE models give similar results in term of percent ARB when data

has no outliers (normal scenario that both ui and ei from normal distribution). When there

are unit and area level outliers (both ui and ei from t-distribution), the robust t-SAE model

produces the smallest ARB, especially for t3 (t-SAE with 3 degree of freedom).

Figure 2 depicts the comparison of asymptotic relative efficiency (ARE) of EBLUP under

the robust models (based on Huber function and t-distribution) with respect to normal-SAE

model. It shows that ARE value of EBLUP under robust method is higher than 1 as its MSE

decreases. It means, both robust models are more efficient than the normal-SAE when data

has unit and area level outliers (both ui and ei from t-distribution). Its efficiency can be

up to three times or more when ui and ei are from t-distribution with 2 degrees of freedom

83



1

2

3

4

1_Normal 2_t5 3_t4 4_t3 5_t2
Scenarios

A
R

E
method

Huber
t5
t4
t3

(a) m = 15, σ2
u = 1

1.0

1.5

2.0

2.5

3.0

1_Normal 2_t5 3_t4 4_t3 5_t2
Scenarios

A
R

E

method

Huber
t5
t4
t3

(b) m = 15, σ2
u = 4

2

4

6

1_Normal 2_t5 3_t4 4_t3 5_t2
Scenarios

A
R

E

method

Huber
t5
t4
t3

(c) m = 30, σ2
u = 1

1.0

1.5

2.0

2.5

3.0

3.5

1_Normal 2_t5 3_t4 4_t3 5_t2
Scenarios

A
R

E

method

Huber
t5
t4
t3

(d) m = 30, σ2
u = 4

Figure 2: Simulated values of asymptotic relative efficiency (ARE) of robust Huber and
t-SAE with several degrees of freedom (ν = 3, 4, 5) w.r.t normal-SAE model

and two times or more when data from t-distribution with 3 degrees of freedom. In this

condition, ARE of EBLUP under all robust t-SAE models (3, 4 and 5 degrees of freedoms)

are higher than the ARE under robust Huber with respect to normal-SAE models, and the

t-SAE with 3 degree of freedom is highest.

For more detail, we can see Table 1. It presents the comparison of MSE of EBLUP

averaged over areas under normal, robust Huber and t-SAE models. It is interesting to

analyze the MSE of EBLUP. Table 1 shows that the MSE can decrease as the number of

areas m increases, but when the random effect variance σ2
u gets bigger, the MSE becomes

larger. Over all, we can see that all t-SAE models have smaller MSE than normal-SAE and

Huber models when data contains unit and area level outliers (ui and ei from t-distributions),

and t-SAE model with 3 degree of freedom has smallest of MSE, mainly for data with smaller

random effect variance. So, there is no doubt based on the MSE and ARE value, the t-SAE
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Table 1: Simulated values of MSE of EBLUP and asymptotic relative efficiency (ARE) of
robust Huber and robust t-SAE models w.r.t normal-SAE model (averaged over areas)

Simulation scenarios MSE ARE

m σ2
u dist. of

ui & ei

normal Huber t3 t4 t5 Huber t3 t4 t5

15 1 normal 1.9 1.9 2.0 1.9 1.9 1.0 1.0 1.0 1.0

t5 5.0 3.0 2.9 2.9 2.9 1.7 1.7 1.7 1.7

t4 6.7 3.8 3.5 3.5 3.6 1.8 1.9 1.9 1.9

t3 12.9 6.1 5.0 5.3 5.6 2.1 2.6 2.4 2.3

t2 83.5 23.9 20.1 26.1 33.4 3.5 4.2 3.2 2.5

4 normal 3.3 3.7 4.2 4.0 3.8 0.9 0.8 0.8 0.9

t5 6.5 5.8 6.1 5.9 5.7 1.1 1.1 1.1 1.1

t4 8.3 7.3 7.3 6.9 6.8 1.1 1.1 1.2 1.2

t3 17.3 10.7 9.3 9.4 9.6 1.6 1.9 1.8 1.8

t2 103.7 59.5 32.8 36.9 43.0 1.7 3.2 2.8 2.4

30 1 normal 1.4 1.4 1.5 1.5 1.4 1.0 0.9 0.9 1.0

t5 3.2 2.3 2.2 2.2 2.2 1.4 1.4 1.5 1.5

t4 5.0 2.8 2.6 2.6 2.6 1.8 1.9 1.9 1.9

t3 10.7 4.2 3.6 3.8 3.9 2.5 3.0 2.8 2.7

t2 74.9 15.1 11.0 12.8 14.3 5.0 6.8 5.9 5.2

4 normal 2.7 2.9 3.3 3.1 3.0 0.9 0.8 0.9 0.9

t5 5.4 5.0 4.9 4.7 4.7 1.1 1.1 1.1 1.2

t4 6.6 5.7 5.5 5.4 5.4 1.2 1.2 1.2 1.2

t3 17.2 9.3 7.8 7.8 8.0 1.9 2.2 2.2 2.2

t2 82.5 32.2 24.3 26.2 28.0 2.6 3.4 3.2 2.9

models are more efficient than normal-SAE even robust-SAE Huber since data contains both

unit and area level outliers.

4 Application

The average per capita household consumption expenditure is one of the welfare indicators

in a region. Statistics Indonesia (BPS) has been collecting the data of welfare through the
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National Social Economic Surveys (SUSENAS), and one of the product is to estimate the

average of per capita household expenditure (PCHE). SUSENAS March 2015 that conducted

to estimate for districts level, by SAE model, the same survey data can be used to get the

estimation for sub-districts. In this paper we used SUSENAS March 2015 to estimate the

average of per capita household expenditure for m = 29 sub-districts in Bandung city with

sample sizes as much 1040 households.

Figure 3: Histogram (a) and boxplot (b) of the direct estimates of PCHE at sub-districts
in Bandung city based on SUSENAS March 2015

Before calculating the EBLUP estimator, let us look at Figure 3 first. It displays the

histogram and box-plot of the direct estimates of PCHE at sub-districts in Bandung city

based on SUSENAS March 2015. This figure shows that the distribution of PCHE is not

normal, its tail is stretched to the right. It indicates the existence of some outliers, but not

explain the type of outliers. Generally logarithmic transformation is done to overcome this.

So in this paper, we compare the direct estimates of PCHE with EBLUP from several SAE

models based on normal distribution, logarithmic transformation method, Huber model and

t-distribution based model. Explanation in how to get the log-transformed EBLUP see [22],

and [26] for Huber’s EBLUP.

4.1 Variables selection

In theory, household income directly influences its expenditure. However, the data is difficult

to obtain, especially for the sub-district level until now it is not yet available. According to
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empirical studies, demographic social factors can affect the level of household expenditure.

Sekhampu and Niyimbanira [20] showed employment status and education have a positive

effect on household expenditure. Coskun et al. [6] stated that housing wealth is significantly

and positively related to household expenditure. Arias-Granada et al. [1] in his research

at Dhakka Bangladesh showed that there were differences in water and sanitation services

based on the level of household welfare. This showed that the higher level of income,

the ability to buy drinking water with high quality is higher too. Therefore, a household

income is approximated by the housing condition, the main source of drinking water is used,

education, employment, and other social or cultural status. These variables can be found

in Village Potential (PODES) data.

To get the EBLUP estimators of PCHE at sub-districts, we developed SAE model by

modeling its direct estimates from SUSENAS March 2015 with the auxiliary variables from

PODES 2014. The variables which have significant effect were:

• the proportion of villages where most households use bottled water as the primary

source of drinking water (x1i),

• the proportion of villages with the availability of communal library (x2i)

• the proportion of villages with settlements below extra high voltage air ducts (x3i).

Variable (x2i) is an approximation for education, while (x3i) is for housing conditions. The

coefficients estimates based on normal-SAE and t-SAE models are presented in Table 2.

Only the third variable has a negative effect, while the first two have positive effects. It is

interesting that in urban areas, people reading interest can affect the level of welfare, which

in this case is reflected in household expenditure. On the contrary, a large number of illegal

settlements can cause an increase in urban poverty.

Table 2: Regression parameter estimates and standard errors (in parentheses) for normal-
SAE model and t-SAE with 3 degree of freedom (t3)

Variables normal t3

(Intercept) 989.20 (222.3) 976.24 (50.8)

x1i 16.25 (3.9) 9.21 (1.7)

x2i 10.34 (3.7) 7.34 (1.6)

x3i -14.33 (5.7) -7.18 (2.1)

log-likelihood -231.06 -193.23

AIC 472.13 396.47

Figure 4 depicts the comparison of estimated PCHE at Bandung city 2015, between the

direct estimates and the EBLUPs. EBLUPs under robust t-SAE model give similar with the

Hubers results. We can see that the EBLUPs are around the median of direct estimates.
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Figure 4: Comparison between direct estimates of PCHE from SUSENAS March 2015 and
EBLUPs under normal-SAE, log-transformation, Huber and t-SAE (ν = 3)

Meanwhile, the EBLUPs under normal-SAE and the logarithmic transformation method

are still too close to its direct estimates, and we know that they are unreliable because the

survey is not designed to sub-districts level. Therefore, the SAE model based on normal

distribution and even its logarithmic transformation are not good estimates in this time.

Because of that, we should investigate the violation of normality assumption. Here we

present the qq-norm plot of standardized residuals ê∗i and random effect ûi for normal-SAE

model (Figure 5) and log-transformed normal-SAE model (Figure 6). The standardized

residuals are computed by ê∗i = êiσei, where êi = yi − θ̂i [26]. Figure 5 indicates the

violation of normality in both sampling errors and random effects. Thus, we can understand

that the data contains both unit and area level outliers and these affected the calculation

of EBLUP under normal-SAE model that is close to the direct estimates. Sometimes a

logarithmic transformation can overcome the violation of normality, but Figure 6 shows us

that this method just overcome the normality violation on sampling error term, but not on

the random effects term. So the robust models are more advantage in this condition.

Which robust models must be choose. Back to Table 2, it shows that the estimated values
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Figure 5: Q-Q norm plot for standardize residuals (a) and random effects (b) based on
normal-SAE model
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Figure 6: Q-Q norm plot for standardize residuals (a) and random effects (b) based on
log-transformed normal-SAE model

of the normal-SAE model has the larger value than the robust t-SAE model. This indicates

that the outliers influence estimation of parameters. we also can see that the robust t-

SAE model produces larger log-likelihood and smaller AIC compare to normal model. In
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other words, the robust t-SAE model is better than normal model. Now let us look at

Table 3 given in Appendix. It shows the results of PCHE estimation and standard errors of

each direct method and SAE models such as normal, Huber and t-distribution. It can be

seen that the standard errors of the normal-SAE model tends to be large and still close to

the value of direct estimation. Meanwhile, the robust models (Huber and t-SAE) produce

standard error of smaller values. We know that a good model produces an estimator with

a small standard error. The table shows that the robust t-SAE (with 3 degrees of freedom,

t3) model produces the smallest standard errors value. Thus, in this case, the SAE model

based on the t-distribution produces a best estimation.

Table 3: Estimates of PCHE and standard errors between direct, normal, Huber and t-SAE
(ν = 3) methods (sorted ascending by direct estimates)

Area
Estimates Standard errors

direct normal Huber t3 direct normal Huber t3

01 761.73 764.46 773.51 1160.24 44.86 44.78 42.72 53.15

02 831.55 837.89 869.02 1098.56 89.08 88.45 86.45 54.11

03 889.91 921.31 1039.45 1261.46 173.56 169.02 125.15 79.40

04 949.70 962.31 1001.55 1068.01 180.89 175.73 154.75 54.31

05 1028.22 1027.75 1049.84 1080.67 146.43 144.05 143.49 107.85

06 1032.41 1032.10 1040.44 1072.12 97.75 96.92 96.84 66.56

07 1098.01 1074.37 1054.10 984.47 183.59 178.84 153.82 99.68

08 1112.88 1190.83 1335.06 1710.40 194.80 189.38 170.50 142.70

09 1165.39 1171.36 1172.45 1159.78 177.98 172.98 145.64 55.65

10 1165.53 1169.76 1170.35 1160.46 109.00 107.88 98.95 52.51

11 1209.24 1228.81 1288.34 1347.44 211.15 203.31 180.47 93.28

12 1303.65 1285.39 1214.99 979.00 142.90 140.32 125.48 61.14

13 1317.08 1315.04 1281.63 1129.77 122.76 121.15 115.64 52.27

14 1333.41 1322.71 1260.71 1098.61 164.06 160.17 142.19 53.97

15 1402.76 1431.62 1443.43 1418.86 226.88 219.00 177.67 134.46

16 1455.84 1461.15 1477.25 1449.14 227.20 218.89 176.55 119.76

17 1493.54 1474.04 1367.82 1220.97 237.56 225.83 198.72 60.22

18 1526.60 1443.41 1250.53 982.83 234.46 223.94 162.05 85.15

19 1693.88 1826.05 1830.30 1803.88 329.77 300.90 210.70 113.22

20 1701.42 1751.34 1750.88 1717.91 200.28 194.56 185.09 127.92

21 1777.72 1931.59 1944.92 1922.12 328.76 301.09 216.06 130.89

22 1936.38 1842.39 1592.39 1465.69 482.50 400.41 269.22 96.01

23 2111.14 2227.02 2142.36 2042.39 396.54 353.21 245.06 156.55

24 2230.29 2177.97 1903.99 1710.42 370.53 334.57 226.21 142.69

25 2251.47 2242.22 1918.81 1667.07 329.73 303.97 221.96 111.66

26 2320.17 2318.82 2091.89 1909.69 391.55 352.02 294.20 153.34

27 2416.67 2768.44 2555.82 2426.46 550.51 454.86 330.78 205.48

28 3728.03 3403.95 1803.00 1487.67 290.72 271.18 213.47 92.73

29 6121.52 4853.46 2594.96 2324.51 542.46 449.09 295.54 198.64
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5 Conclusions

This study has proven that the proposed SAE model based on t-distribution is more robust

than SAE models based on normal distribution and Huber function. The proposed model is

more efficient to be used when the data have both unit and area level outliers. In addition,

the study has also found that the smaller degrees of freedom is more effective for longer tail

data.

The application of SUSENAS data to predict the average of per capita household expen-

diture in some sub-districts at Bandung city showed that the logarithmic transformation is

not able to overcome the violation of normality in SAE models, since the data have outliers

in both sampling errors (unit level) and random effects (area level). This transformation

can only fix the assumption of normality violation in sampling errors but not on the random

effects. On the other hand, the robust t-SAE models which assumes t-distribution in both

sampling errors and random effects can handle this type of problem better.

Finding MSE of EBLUP and its estimates in small area estimation model is one of the

challenges for SAE researchers. However, this study has not been conducted. Next research,

we will discuss how to build analytically the MSE of EBLUP in the t-SAE model that is

proposed, and find the estimates.
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