
1. INTRODUCTION

First, the technical terms used in this research are

defined. An accident refers to an event that causes a loss

for the target system. Losses imply negative effects for

users, missions, or the target system. Hazard refers to a

state of the system that negatively affects the target

system given some negative conditions.

Recently, industrial products, such as cars and

medical and aerospace apparatuses, are developed as

systems that combine hardware and software

(components). Though their configuration and control

are complex, accidents can occur. In many cases, the

hazards cause accidents that arise from the interactions

between the hardware and software. This accident

model is called System-Theoretic Accident Model and

Process (STAMP). A safety analysis method that

clarifies hazards and scenarios based on the STAMP is

called STAMP-based Process Analysis (STPA) [1].

The software that control actions of industrial

products are called embedded control software (ECSW).

This research proposes an analysis method for hazards

caused by the interactions between hardware elements

and ECSW’s functions using STPA. The hardware

elements and ECSW’s functions are called components.

The outline of the proposed method is as follows.

First, the accidents and hazards are defined. Second, the

hardware and ECSW configuration are described using

use-case diagrams and class diagrams (UML system

specifications). Next, unsafe control actions (UCAs) of

the ECSW and processes leading to hazards (hazard

scenarios) are clarified by conducting STPA. Hazard

scenarios are then described in detail using sequence

diagrams, and the interactions between the components

are clarified. Moreover, components related to hazard

occurrence and conditions are clarified by analyzing the

sequence diagrams. Finally, countermeasures to prevent

hazards are planned. These countermeasures are

prepared analyzing the existing hazard countermeasures.

2.RELATED WORKS

2.1 Related researches

Takahashi et al. proposed a method to clarify all

accidents that may occur and device countermeasures to

solve them using failure mode and effects analysis

(FMEA) [2]. Weber et al. proposed a fault detection

method using fault tree analysis (FTA) for avionics

software written in assembler [3]. Leveson et al. showed

that fault tree (FT) can be developed by preparing and

combining FT templates corresponding to the essential

instructions of the ECSW [4, 5]. Takahashi et al.

proposed rules for automatically developing FT by

tracing the process that causes accidents and combining

FT templates [6]. Pai et al. proposed a method that

calculates the reliability of the system by inputting

design specifications written in UML [7]. Though these

methods can clarify the cause of failures at the

component level for industrial products, the complex

failures that arise from the interactions between the

components cannot be dealt with.

2.2 STAMP and STPA

The STAMP model is first explained. Fig.1 shows an

outline of the STAMP model. The STAMP model

describes a system that consists of a controller, process

model, and controlled process. The process model

shows the state of the controlled process that the

controller supposes. The controller sends control actions

(CAs) to the controlled process based on the state of the

process model and changes the state of the process

model. The controlled process changes the inner state

based on the received CA and returns the result as

feedback data (FBD). If the state of the process model

does not correspond to the state of the controlled

process, the system is in the unsafe state, at which point

hazard may occur. A diagram that describes the

relationships for the target system is called control

structure diagram (CSD). Unsafe CAs (UCAs) are

defined by applying “the 4 keywords to identify UCAs

(such as not providing, providing, too fast/too late,

A Proposal for a Hazard Analysis Method for Embedded Control Software Using STAMP

Masakazu Takahashi1†, Yunarso Anang2, and Yoshimich Watanabe03

1Department of Computer Science and Engineering, University of Yamanashi, Kofu, Japan

(Tel : +81-55-220-{18585, 38651}, ; E-mail: {1mtakahashi, 3nabe}@yamanashi.ac.jp)
2Department of Computational Statistics, Institute of Statistics, Indonesia

(Tel : +62-21-819-1437; E-mail: anang@stis.ac.id)

Abstract: The software that control actions of industrial products are called embedded control software (ECSW).

This research proposes a method for hazard analysis caused by ECSW using System-Theoretic Process Analysis

(STPA). The outline of the proposed method is as follows. (1) The accidents and hazards that constitute the target

for analysis are defined. (2) The hardware and ECSW are designed using the Unified Modeling Language

(UML). (3) Unsafe control actions of the ECSW and hazard scenarios are clarified by conducting STPA using the

hazard information and UML system specifications as inputs. (4) The hazard scenarios are described in detail

using sequence diagrams, and interactions between the hardware and ECSW are clarified. (5) Parts of the

hardware and functions of the hazard occurrence and conditions that lead to hazards are clarified by analyzing

the sequence diagrams. (6) Countermeasures to prevent conditions are planned and applied to the components.

Keywords: Safety Analysis, Embedded Control Software, STPA, Hazard

† Masakazu Takahashi is the presenter of this paper.

Proceedings of the SICE Annual Conference 2019
September 10-13, 2019, Hiroshima, Japan

978-4-907764-66-1 PR0001/19 ¥400 © 2019 SICE 595

inappropriate execution sequence, too fast/too long)” to

the CAs. Conditions under which every UCA can cause

hazards are clarified. The UCA in the CSD's control

loop is applied to the guide word one by one to check if

it causes a hazard. Fig.2 shows “the 13 guide words

used for finding a hazard in a control loop.” The

conditions that lead to hazards are clarified. In addition,

scenarios are developed to show the processes of the

hazard. Finally, countermeasures to prevent hazards are

developed by considering the hazard scenarios.

3.PROPOSED HAZARD ANALYSIS

METHOD

3.1 Outline of the Proposed Method

This research proposes an analysis method for

hazards caused by ECSW designed based on the

object-oriented design method. The hardware parts and

ECSW’s functions (method) are called the components.

The characteristic of the proposed method is that the

hazard occurrence process caused by interactions

between the components are assigned to the hazard

occurrence conditions (HOCs) for each component. This

makes planning the hazard prevention countermeasures

(HPCs) easy. By combining and applying these HPCs,

the safety of the industrial product is improved.

Fig.3 shows an outline of the proposed method. The

proposed method consists of six steps. Task (1)

“definition of accidents and hazards” describes the

target accident and hazard of the industrial product and

the ECSW. Task (2) “development of UML system

specification” describes ECSW use-case and class

diagrams referring to the requirements of the hardware

and software. These diagrams are called UML system

specifications. In addition, CSDs are developed by

referring to the UML system specifications. Task (3)

“analysis of unsafe control actions and development of

hazard scenarios using STPA” clarifies the UCAs by

applying “the 4 keywords to identify UCAs that cause

hazards” to CSD. In addition, by applying “the 13

guide words used for finding hazards in a control loop”

to UCA, UCAs that lead to hazards are clarified. These

processes are called hazard scenarios. Task (4)

“development of sequence diagrams corresponding to

hazard scenarios” describes sequence diagrams by

referring to hazard scenarios and UML system

specifications. Task (5) “clarification of the hardware

and software components related to the occurrence of

hazards” assigns interactions between hardware parts

and ECSW’s method to each component, thereby

making the HOCs clear. In addition, task (6) “planning

hazard prevention countermeasures for each component”

plans HPCs for each component using standard HPCs.

3.2 Tasks make up the Proposed Method

3.2.1 Definition of accidents and hazards

The task “definition of accidents and hazards” defines

the target accidents and hazards for analysis. The inputs

for this task are the design specifications of the

industrial product, ECSW requirement specifications,

and operation manuals, and the output is the list of

accidents and hazards.

3.2.2 Development of UML system specifications

The task “development of UML system

specifications” describes UML system specifications

that consists of use-case diagrams and class diagrams

for the target system. The inputs of this task are the

requirements of the ECSW and operation manuals,

whereas the output is UML system specifications. The

use-case diagrams describe the scope of the hardware

and ECSW. In the proposed method, relations that

signify control are described using dotted arrows from

the control apparatus to the controlled apparatus,

whereas relations that represent sending and receiving

of data are described using solid lines from the sending

apparatus to the receiving apparatus. This information is

used when developing the CSD. Class diagrams

describe the ECSW’s classes and methods.

Fig.1 Outline of STAMP Model (Fig.1.1-1 in[1])

Fig.2 guide words to find the causes of a hazard in a

control loop （Fig.2.5-1 in [1], modified）

Fig.3 Outline of the Proposed Method

 Controller

Process Model

Controlled Process

Control

Action (CA)

Feedback

Data (FBD)

(2) Inadequate
Control Algorithm

(Flaws in creation,
process changes,

incorrect modification

or adaptation)

(3) Process
model

Inconsistent,
incomplete, or

incorrect

(3) Inadequate
operation

(4) Component
failures,

Changes over time

(4) Inadequate
operation

(1) Control input or

external information
wrong or missing

(8) Inappropriate,

ineffective or missing
control action

(7) Delayed

operation

Conflicting control

actions

(9) Process input

missing or wrong (10) Unidentified or

out-of-range
disturbance

(11) Process output

contributes to
system hazard

(5) Inadequate or

missing feedback

(6) Incorrect or no

information provided,
Measurement
inaccuracies,

Feedback delays

Controller

Actuator

Controlled Process

Controller 2

Sensor

Process Model

Control Algorithm

596

3.2.3 Analysis of unsafe control actions and

development of hazard scenarios using STPA

The task “analysis of unsafe control actions and

development of hazard scenarios using STPA” analyzes

the UCAs and develops the hazard scenarios. The input

to this task is UML system specifications, and the

output is the CSD. First, the CSD is developed. The

CSD comprises components that are actors in use-case

diagrams and classes in the class diagrams. The CAs

between components are method invocations between

classes. The direction of the CA is the same as the

direction of the relation representing the control and

direction of the navigability. Sending and receiving

FBD between components is a relation that implies the

return value of the method. Fig.4 shows the interactions

between the UML system specifications and the CSD.

Second, the UCAs are derived from all combinations of

the CAs in the CSD and “the 4 keywords to identify

UCAs that cause hazards.” The CSD serves as input for

this task, whereas the output is the list of UCAs. Finally,

control loops that cause hazards are identified by

referring to the UCA and CSDs, “the 13 guide words

used for finding hazards in control loops” are applied to

the control loop, and each control loop is checked if it is

a hazard or not. Processes that lead to a hazard are

defined as the hazard scenarios. The HOCs and

processes that lead to hazards are described in the

hazard scenario. The input for this task is the UCAs, and

the output is the hazard scenarios.

3.2.4 Development of sequence diagrams

corresponding to the hazard scenarios

The task “development of sequence diagrams

corresponding to the hazard scenarios” describes the

details of the hazard scenarios using sequence diagrams.

This task defines the details of the hazard scenarios

using invocation of the ECSW’s function by the actor,

data sending and receiving between ECSW functions,

and message sending and receiving between classes.

The messages sent and received between the lifelines

are relations that show CAs in the use-case diagram,

relations that show data sending and receiving in the

use-case diagram, and methods of the ECSW’s classes.

The direction of the messages corresponds to the

direction of inductivity in the class diagrams. The inputs

for this task are the hazard scenarios and UML system

specifications, and the output is the sequence diagrams

that describe the details of the hazard scenario.

3.2.5 Clarification of HW and SW components and

conditions related to the occurrence of hazards

The task “clarification of HW and SW components

and conditions related to the occurrence of hazards”

describes the components related to the occurrence of

hazards by analyzing the sequence diagrams and

clarifying the HOC. The input for this task is the

sequence diagrams, and the output is the list of

components and HOCs related to the hazard. The

conditions for executing each method in the sequence

diagrams are clarified. These consist of conditions for

invoking a method and conditions representing inner

statuses and data. These conditions are HOCs. Fig.5

shows an example of clarification of the components

related to a hazard and HOCs.

3.2.6 Planning HPC for each component

The task “planning hazard prevention countermeasures

for each component” analyzes the HOC and plans the

HPCs. The inputs are components and HOC related to

the hazard, and the output is the HPC. Since hazards

occur when executing the components, HOCs are

“particular components executed under particular

conditions.” Therefore, HPC is “not to occur the

particular HOC” or “not to invoke the components when

occurring the particular HOC.” Table 1 shows the list of

standard HPCs that are developed by analyzing and

summarizing the existing HPCs of the ECSW. HPCs for

ECSW are decided by applying the countermeasure

policies in Table 1 to the HOC of each component.

Table1 Standard hazard prevention countermeasures for HOPs

Countermeasure policy Standard hazard prevention countermeasures

Review the execution conditions

Conduct multiple checks when execute

Conduct the execution check

Review the not execution conditions for functions

Conduct multiple checks when not execute

Conduct not execution check

Conduct multiple checks on SOP

Improve the visibility of SOP indications

Conduct multiple checks on HMI

Improve the visibility of HMI

Check the content of HMI

Realize faster processing

Develop faster devices

The upper limit of calculation precision is confirmed Increase significant digits

The lower limit of calculation precision is confirmed Increase significant digits

Divided by zero Give a warning of division by zero

Refuse data

Do not input data

Restrict interruption tasks

Prohibit interruption tasks

Unexpected execution requests are not sent

Refuse unexpected execution requests
Unexpected CPU load occurs

Indications on Human Machine Interface (HMI) misread

The not execution condition of method are

reconsidered.

Input/Output

Multiple checks on input data

Unexpected amount of data is accepted

Prevention of

occurence for

specific condition

(HOC)

Unexpected

events

HOC

Execution of

method

CPU Load

Unexpected data update occurs

Unexpected interruption tasks occur

The execution conditions for method are reconsidered.

Input data error

Instructions on Standard Operation Procedure (SOP)

misread

597

Fig.4 Correspondence between the UML System

Specifications and CSD

Fig.5 An example of clarification of components and

HOC related to a hazard

Fig.6 Outline of the railroad crossing control system

Fig.7 Configuration of the railroad crossing

control system

4. APPLICATION AND EVALUATION

OF THE PROPOSED METHOD

Safety analysis for the railroad crossing control

system (RCCS) is conducted to evaluate the method.

 First, an outline of the RCCS is the same as the

system written in [8]. Fig.6 shows the outline of the

RCCS. RCCS consists of the control equipment, the

railroad crossing and warning device, and sensors (two

warning start sensors, A and B, and one warning stop

Fig.8 CSD of the railroad crossing control

system

Fig.9 Hazard Scenario for the target system

Fig.10 Sequence diagram corresponding to a

hazard scenario

Fig.11 State machine diagram for railroad crossing

control class

sensor, C. These sensors can't detect the direction of

the train.) The following are the requirements for

RCCS:

Railroad
crossing
control

Start-
warning
sensor

Stop-
warning
sensor

Sensor A
Railroad
crossing

Use-Case DIagram
Class Diagram

Train

Control bar
of railroad
crossing

Railroad control

system

Railroad
crossing
Control

Railroad
crossing

Sensor A :
start-

warning

sensor

Sensor B:
start-

warning

sensor

Sensor C:
stop-

warning

sensor

CA

closeRailroadCrossing
cpenRailroadCrossing
startWarning

stopWarning

CA

startMask
stopMask
existTrain

existNoTrain

Actor

CA

passing
correspondence

Control Structure
Diagram

[Hazard Scenario]
Train pass the railroad crossing without
warning.

Scenario 1
Warning direction From Railroad crossing
control to railroad crossing does not reach.
Scenario 2
Message does not reach railroad crossing
control because of the failure of start-
warning sensor. ：

：
Hazard Scenario

Closing and start warning
method in the railroad
crossing does not work

Closing and start
warning method can

not be executed.

Closing and start
warning method can

not be invocated.

Train

：Railroad

Crossing

control

：Railroad

crossing

：start-

warning

sensor

：stop-

warning

sensor

pass()

existTrain()

pass()

existNoTrain()

Closing & start warning()

Sequence Diagram

Railroad
Crossing

Control

Start-

warning

sensor

Stop-

warning

sensor

Sensor
Railroad

crossing

Class Diagram

Railroad

crossing

& warning

device

Stop alarm

sensor C

Start alarm

sensor A

Start alarm

senor B

Line

Direction

of travel

Control

apparatus

Station Station

Use-Case Diagram

Train

Control
railroad
crossing

Railroad crossing

control system

Railroad
crossing
control

Start alarm
senor

Stop alarm
sensor

Sensor Railroad crossing&
alarm device

Class
Diagram

maskStop()maskStart()

closeBar&startAlarm()
openBar&stopAlarm()

pass()

existTrain()
existNotrain()

1

1

1

n

Start alarm sensor
A：start alarm
sensor

Stop alarm
sensor C：stop
alarm sensor

Start alarm sensor
A：start alarm
sensor

Railroad
crossing
control

Start alarm
sensor

Stop alarm
sensor

Sensor
Railroad crossing
& alarm device

Use-Case Diagram Class Diagram

Control
railroad
crossing

Railroad crossing

control system

Railroad
crossing
control

Railroad crossing
& alarm device

Sensor A: start
alarm sensor

Sensor B: start
alarm sensor

Sensor C: stop
alarm sensor

CA

closeBar&startAlarm()
openBar&stopAlarm()

CA

startMask()
stopMask()
existTrain()

existNoTrain

Train

CA

pass()

correspondenceControl Structure
Diagram

Railroad crossing control system

Train

Stop alarm
sensor C：Stop
alarm sensor

Start alarm sensor
A：Start alarm
sensor

Start alarm sensor
A：Start alarm
sensor

Stop alarm

senor C

Start alarm

sensor A

Start alarm

sensor BDirection

of travel

Scenario:

After the train from A passes the stop alarm sensor, the train stops.

When the rear part of the train turns, the train pass the opened railroad crossing.

Station Station

Rear part of
the train turns
back.

pass()

trainExist()

Pass()

existNotTrain()

closeBar&startAlarm()

openBar&stopAlarm()

maskStart()

pass()

maskStop()

existTrain()

Rear part of the train pass

the railroad crossing
without warning

maskStart()

maskStop()

Train

：Railroad
crossing
control

：Railroad
crossing &

alarm device

Start alarm
sensor A：start
alarm Sensor

Start alarm
Sensor B：start
alarm sensor

Stop alarm
sensor C：stop
alarm sensor

Pass the Train

Railroad crossing

unreached

Emergencyg

stop alarm sensor C. existNoTrain()

start alarm

sensor B.

existTrain()
Stop alarm sensor C.

existNoTrain()

Initial

start alarm sensor A.existTrain()

Stop

598

Table 2 List of extracted UCAs

Table 3 Hazard scenarios derived from UCAs and guide words

(1) When the ECSW detects a train using the sensors A

or B, it starts warning after a period of time.

(2) When the ECSW detects a train using the sensor C,

it stops warning after a period of time.

(3) When the train moves from A to C, sensor B is

masked.

(4) When the train moves from B to C, sensor A is

masked.

Next, the results of the hazard analysis are explained

The task “definition of accidents and hazards” defines

hazards and accidents. In this example, an accident is “a

train and car collision at the railroad crossing,” and a

hazard is “not to be able to close the railroad crossing

when the train is in an area.” The task “development

of UML system specifications” develops UML system

specifications. Fig.7 shows the outline of the RCCS that

the authors designed. The use-case diagram shows that

the train actor and the sensor actors use the RCSS. The

class diagram consists of the RCSS class, sensor class,

and railroad crossing and alarm device. The task

“analysis of unsafe control actions and development of

hazard scenarios using STPA” develops the CSD,

clarifies UCAs, and develops hazard scenarios. Fig.8

shows the CSD of the RCCS. UCAs are extracted by

applying “the 4 keywords to identify the UCAs that

cause hazards” to the CSD. Table 2 shows a list of the

UCAs. In addition, the hazard scenarios are derived by

applying “the 13 guide words”. Table 3 shows the list of

derived hazard scenarios. Subsequently, the case of

“inappropriate control of the train when it turns back to

the railroad crossing after passing the railroad crossing

causes hazards” are analyzed. Fig.9 shows the hazard

Control Action Not providing causes hazard Providing causes hazard
Too early/too late, wrong order causes
hazard

1
Close & start
warning

(UCA1)The train passes the railroad
crossing when not rumbling warning. (the
bar of the railroad crossing does not close.)
(SC1 violation)

The warning rumbles when the train does
not come.

(UCA2)The train arrives the railroad
crossing before rumbling the warning.
(closing bar is too late.)
（SC1 violation)

2
Open & stop
warning method

After the train passes the railroad crossing,
the warning rumbles.

(UCA3) The warning stops rumbling when
the startMask instruction is invocated.
(SC2 violation)

(UCA3)The warnin stops before the train
pssses the railroad crossing. (it is too early
to open the bar of the railroad crossing
after closing the bar.)
(SC2 violation)

3
startMask method
(Mask enable)

When the train that passes A and c arrives
B, the warning rubles again.

(UCA4)When the train does not arrive, the
startMask instruction invocates and the
warning does not rumbling.
(SC1 violation)

(UCA5)When the maskStart instruction to
the stop-warning sensor is delayed and is
not issued before the train passes the
sensor, the maskStart instruction will
remain and the warning will not be rumbling
in the case that two trains in the opposite
direction access continuously.
(SC1 violation)

4
stopMask method
(Mask disable)

(UCA6)As the stop maskStart instruction is
not issued to the start sensor on the
opposite side, the sensor does not start
the warning even when the opposite train
accesses (including the case that the train
turn back after issuing the maskStart
instruction)
(SC1 violation)

The warning rumbles again. Issuing the stopMask instruction start
rumbling again, before the train passes B.

①Control input or external
information wrong or missing

②Inappropriate, ineffective or
missing control action

③Delayed operation
④Process input missing or
wrong

⑤Unidentified or out-of-range
disturbance

(UCA1)The train passes the
railroad crossing when not
rumbling warning. (the bar of
the railroad crossing does not
close.)

･inappropriate control for the
train that truns after the
railroad crossing passes.
・Competition with the
continuation of stop warning
and the new issue of start
warning.

･The failure of the sensor A
causes the missing of the
instruction from A to the
railroad crossing control.

(UCA2)The train arrive the
railroad crossing before
rumbling the warning. (closing
the bar is too late.)

・Delay of the warning device.

(UCA3) Rumbling warning is
stopped before the train
passed. (Opening the bar is too
early after closing the bar.）

C causes the short circuit by
the disturbance before the
train arrives the railroad
crossing after the train passes
A.

(UCA4)　When the train does
not arrive, the startMask
instruction invocates and the
warning does not rumbling.

・Inappropriate state control of
the railroad crossing.

(UCA5) the warning does not
rumble when the train comes
because of the delay of
issuring the maskStop
instruction.

・Delay of issuring the mask
stop instruction with the no
support for the high spped
train.

・Disturbance by the obstacle
on the rail.

(UCA6)The maskStart
instruction issues too late.

・Inappropriate external input
(disturbance） causes missing
of stopMask instruction.

・The delay of issuring the
instruction for the control
apparatus causes missing the
stopMask instruction.

・Inappropriate state control
causes the missing the
maskStop instruction.

・Inappropriate external input
causes the missing of
maskStop instruction.

599

scenario at this point. The task “development of

sequence diagrams corresponding to the hazard scenario”

develops sequence diagrams corresponding to the

hazard scenario. Fig.10 shows sequence diagrams

corresponding to the hazard scenario. The task

“clarification of the HW and SW components and

conditions related to the occurrence of a hazard”

clarifies the components related to the hazard. In Fig.10,

after the train passes the sensor C, the RCCS masks the

sensors A and B. Afterwards, the rear part of the train

turns back and passes the sensor C. At this point,

because the status of the crossing is open and the status

of the warning device is stopping, the crossing and

warning device do not act even if the RCCS issues the

open instruction to the crossing and rumbling

instruction to the warning device. Therefore, the train

enters the railroad crossing when the status of the

crossing is open and the status of the warning device is

stopping, thereby leading to hazard. As a result, the

components related to the hazard scenario are

existTrain() and existNoTrain() of the railroad crossing

control class. The task “planning hazard prevention

countermeasures for the components” plans HPC for

each component referring to the standard HPC. The

existTrain() method invokes closeBar&start Aram()

method of the railroad crossing class. Even if this

method is invoked, the bar of the railroad crossing is

still closed, and only the warning device is sounded.

Therefore, as there is low possibility of this hazard

occurring, the countermeasures for this event are not

applied. In contrast, the existNoTrain() method invokes

openBar&stopAlarm() method in the railroad crossing

control class. Generally, the existTrain() method and

existNoTrain() method should be carried out in pairs. In

addition, the existTrain() method and existNoTrain()

method should be invoked alternately. Therefore, “the

execution conditions for the method are reconsidered”

of HOC in Table 2 is applied. In addition, the “conduct

execution check” of the standard HPC is applied. In this

case, the state transition diagram shown in Fig.11 is

added to the railroad crossing class. In case the

existNoTrain() message is received when the state is

waiting for the train to pass, countermeasures, such as

issuing emergency message to the safety supervisor (the

method that issues the warning is added to the railroad

crossing class) and sounding the warning are taken.

These countermeasures prevent the occurrence of a

hazard. As a result of applying the proposed method,

hazards associated with the RCCS could be clarified,

and appropriate countermeasures to avoid these hazards

could be found.

5.FUTURE WORKS

This paper proposed an STPA method applied to

hazard analysis for ECSW, developed based on the

object-oriented design methodology. It clarifies the

causes of hazards that arise from the interactions

between a system’s components and develops a safe

ECSW. However, it was observed that the proposed

method requires a long time to analyze hazards and plan

countermeasures. In particular, conflicts may arise

between countermeasures chosen by the proposed

method when analyzing hazards in complex systems

because the system includes several components with

several hazards and hazard scenarios. In the future, we

will investigate a method that describes SCs using

logical expressions and analyzes them automatically

using logical calculations.

ACKNOWLEDGMENTS

This research was supported by the Scientific Research

Grant of the SUZUKI foundation “A Safety Analysis

Method Cooperating FMEA, FTA, and HAZOP for

Embedded Control Software” and Grant-in-Aid for

Scientific Research (C) of the Japan Society for the

Promotion of Science "Integrated Analysis Method for

hazard cased by software interaction cooperating with

multiple safety analysis methods."

REFERENCES

[1] N. Leveson, Engineering a Safer World, The MIT Press (2011).

[2] M. Takahashi, R. Nanba, and Y. Fukue, "A Proposal of
Operational Risk Management Method Using FMEA for Drug
Manufacturing Computerized System", Transaction of the
Society of Instrument and Control Engineers, 2012, Vol.48,
No.5, pp.285-294.

[3] W. Weber, Heidemarie Tondok, and Michael Bachmayer,
"Enhancing Software Safety by Fault Trees: Experiences from
an Application to Flight Critical SW" ， Proc. of
SAFECOMP2003，2003, LNCS 2788，pp.289-302.

[4] N. G. Leveson and P. R, Harvey, "Analyzing Software Safety,
IEEE Transaction on Software Engineering", 1983, Vol. 9, No.5,
pp.569-579.

[5] N.Leveson, S. Cha, and T. Shineall, "Safety verification of Ada
Programs Using Software Fault Trees", IEEE Software, 1991,
Vol.8, Issue4, pp.48-59.

[6] M. Takahashi, and R. Nanba, "A Proposal of Fault Tree Analysis
for Control Programs", Proc. of SICE Annual Conference 2014,
2014, pp.1719-1724.

[7] G. Pai and J. Dugan, "Automatic Synthesis of Dynamic Fault
Tree from UML System Model", Proc. of 13th International
Symposium on Software Reliability Engineering, 2002, no page
number.

[8] Information-technology Promotion Agency, The first step of
STAMP/STPA - A New Safety Analysis Method based on the
System Oriented Thinking -, Information-technology Promotion
Agency, 2016.

600

