
1. INTRODUCTION 

First, the technical terms used in this research are 

defined. An accident refers to an event that causes a loss 

for the target system. Losses imply negative effects for 

users, missions, or the target system. Hazard refers to a 

state of the system that negatively affects the target 

system given some negative conditions. 

Recently, industrial products, such as cars and 

medical and aerospace apparatuses, are developed as 

systems that combine hardware and software 

(components). Though their configuration and control 

are complex, accidents can occur. In many cases, the 

hazards cause accidents that arise from the interactions 

between the hardware and software. This accident 

model is called System-Theoretic Accident Model and 

Process (STAMP). A safety analysis method that 

clarifies hazards and scenarios based on the STAMP is 

called STAMP-based Process Analysis (STPA) [1]. 

The software that control actions of industrial 

products are called embedded control software (ECSW). 

This research proposes an analysis method for hazards 

caused by the interactions between hardware elements 

and ECSW’s functions using STPA. The hardware 

elements and ECSW’s functions are called components. 

The outline of the proposed method is as follows. 

First, the accidents and hazards are defined. Second, the 

hardware and ECSW configuration are described using 

use-case diagrams and class diagrams (UML system 

specifications). Next, unsafe control actions (UCAs) of 

the ECSW and processes leading to hazards (hazard 

scenarios) are clarified by conducting STPA. Hazard 

scenarios are then described in detail using sequence 

diagrams, and the interactions between the components 

are clarified. Moreover, components related to hazard 

occurrence and conditions are clarified by analyzing the 

sequence diagrams. Finally, countermeasures to prevent 

hazards are planned. These countermeasures are 

prepared analyzing the existing hazard countermeasures. 

2.RELATED WORKS 

2.1 Related researches 

Takahashi et al. proposed a method to clarify all 

accidents that may occur and device countermeasures to 

solve them using failure mode and effects analysis 

(FMEA) [2]. Weber et al. proposed a fault detection 

method using fault tree analysis (FTA) for avionics 

software written in assembler [3]. Leveson et al. showed 

that fault tree (FT) can be developed by preparing and 

combining FT templates corresponding to the essential 

instructions of the ECSW [4, 5]. Takahashi et al. 

proposed rules for automatically developing FT by 

tracing the process that causes accidents and combining 

FT templates [6]. Pai et al. proposed a method that 

calculates the reliability of the system by inputting 

design specifications written in UML [7]. Though these 

methods can clarify the cause of failures at the 

component level for industrial products, the complex 

failures that arise from the interactions between the 

components cannot be dealt with.  

2.2 STAMP and STPA 

The STAMP model is first explained. Fig.1 shows an 

outline of the STAMP model. The STAMP model 

describes a system that consists of a controller, process 

model, and controlled process. The process model 

shows the state of the controlled process that the 

controller supposes. The controller sends control actions 

(CAs) to the controlled process based on the state of the 

process model and changes the state of the process 

model. The controlled process changes the inner state 

based on the received CA and returns the result as 

feedback data (FBD). If the state of the process model 

does not correspond to the state of the controlled 

process, the system is in the unsafe state, at which point 

hazard may occur. A diagram that describes the 

relationships for the target system is called control 

structure diagram (CSD). Unsafe CAs (UCAs) are 

defined by applying “the 4 keywords to identify UCAs 

(such as not providing, providing, too fast/too late, 
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inappropriate execution sequence, too fast/too long)” to 

the CAs. Conditions under which every UCA can cause 

hazards are clarified. The UCA in the CSD's control 

loop is applied to the guide word one by one to check if 

it causes a hazard. Fig.2 shows “the 13 guide words 

used for finding a hazard in a control loop.” The 

conditions that lead to hazards are clarified. In addition, 

scenarios are developed to show the processes of the 

hazard. Finally, countermeasures to prevent hazards are 

developed by considering the hazard scenarios. 

3.PROPOSED HAZARD ANALYSIS 

METHOD 

3.1 Outline of the Proposed Method 

This research proposes an analysis method for 

hazards caused by ECSW designed based on the 

object-oriented design method. The hardware parts and 

ECSW’s functions (method) are called the components. 

The characteristic of the proposed method is that the 

hazard occurrence process caused by interactions 

between the components are assigned to the hazard 

occurrence conditions (HOCs) for each component. This 

makes planning the hazard prevention countermeasures 

(HPCs) easy. By combining and applying these HPCs, 

the safety of the industrial product is improved. 

Fig.3 shows an outline of the proposed method. The 

proposed method consists of six steps. Task (1) 

“definition of accidents and hazards” describes the 

target accident and hazard of the industrial product and 

the ECSW. Task (2) “development of UML system 

specification” describes ECSW use-case and class 

diagrams referring to the requirements of the hardware 

and software. These diagrams are called UML system 

specifications. In addition, CSDs are developed by 

referring to the UML system specifications. Task (3) 

“analysis of unsafe control actions and development of 

hazard scenarios using STPA” clarifies the UCAs by 

applying “the 4 keywords to identify UCAs that cause 

hazards” to CSD. In addition, by applying “the 13 

guide words used for finding hazards in a control loop” 

to UCA, UCAs that lead to hazards are clarified. These 

processes are called hazard scenarios. Task (4) 

“development of sequence diagrams corresponding to 

hazard scenarios” describes sequence diagrams by 

referring to hazard scenarios and UML system 

specifications. Task (5) “clarification of the hardware 

and software components related to the occurrence of 

hazards” assigns interactions between hardware parts 

and ECSW’s method to each component, thereby 

making the HOCs clear. In addition, task (6) “planning 

hazard prevention countermeasures for each component” 

plans HPCs for each component using standard HPCs. 

3.2 Tasks make up the Proposed Method 

3.2.1 Definition of accidents and hazards 

The task “definition of accidents and hazards” defines 

the target accidents and hazards for analysis. The inputs 

for this task are the design specifications of the 

industrial product, ECSW requirement specifications, 

and operation manuals, and the output is the list of 

accidents and hazards.  

3.2.2 Development of UML system specifications 

The task “development of UML system 

specifications” describes UML system specifications 

that consists of use-case diagrams and class diagrams 

for the target system. The inputs of this task are the 

requirements of the ECSW and operation manuals, 

whereas the output is UML system specifications. The 

use-case diagrams describe the scope of the hardware 

and ECSW. In the proposed method, relations that 

signify control are described using dotted arrows from 

the control apparatus to the controlled apparatus, 

whereas relations that represent sending and receiving 

of data are described using solid lines from the sending 

apparatus to the receiving apparatus. This information is 

used when developing the CSD. Class diagrams 

describe the ECSW’s classes and methods.  

 

 

Fig.1 Outline of STAMP Model (Fig.1.1-1 in[1]) 

 

Fig.2 guide words to find the causes of a hazard in a 

control loop （Fig.2.5-1 in [1], modified） 

 

Fig.3 Outline of the Proposed Method 
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3.2.3 Analysis of unsafe control actions and 

development of hazard scenarios using STPA 

The task “analysis of unsafe control actions and 

development of hazard scenarios using STPA” analyzes 

the UCAs and develops the hazard scenarios. The input 

to this task is UML system specifications, and the 

output is the CSD. First, the CSD is developed. The 

CSD comprises components that are actors in use-case 

diagrams and classes in the class diagrams. The CAs 

between components are method invocations between 

classes. The direction of the CA is the same as the 

direction of the relation representing the control and 

direction of the navigability. Sending and receiving 

FBD between components is a relation that implies the 

return value of the method. Fig.4 shows the interactions 

between the UML system specifications and the CSD. 

Second, the UCAs are derived from all combinations of 

the CAs in the CSD and “the 4 keywords to identify 

UCAs that cause hazards.” The CSD serves as input for 

this task, whereas the output is the list of UCAs. Finally, 

control loops that cause hazards are identified by 

referring to the UCA and CSDs, “the 13 guide words 

used for finding hazards in control loops” are applied to 

the control loop, and each control loop is checked if it is 

a hazard or not. Processes that lead to a hazard are 

defined as the hazard scenarios. The HOCs and 

processes that lead to hazards are described in the 

hazard scenario. The input for this task is the UCAs, and 

the output is the hazard scenarios.  

3.2.4 Development of sequence diagrams 

corresponding to the hazard scenarios 

The task “development of sequence diagrams 

corresponding to the hazard scenarios” describes the 

details of the hazard scenarios using sequence diagrams. 

This task defines the details of the hazard scenarios 

using invocation of the ECSW’s function by the actor, 

data sending and receiving between ECSW functions, 

and message sending and receiving between classes. 

The messages sent and received between the lifelines 

are relations that show CAs in the use-case diagram, 

relations that show data sending and receiving in the 

use-case diagram, and methods of the ECSW’s classes. 

The direction of the messages corresponds to the 

direction of inductivity in the class diagrams. The inputs 

for this task are the hazard scenarios and UML system 

specifications, and the output is the sequence diagrams 

that describe the details of the hazard scenario. 

3.2.5 Clarification of HW and SW components and 

conditions related to the occurrence of hazards 

The task “clarification of HW and SW components 

and conditions related to the occurrence of hazards” 

describes the components related to the occurrence of 

hazards by analyzing the sequence diagrams and 

clarifying the HOC. The input for this task is the 

sequence diagrams, and the output is the list of 

components and HOCs related to the hazard. The 

conditions for executing each method in the sequence 

diagrams are clarified. These consist of conditions for 

invoking a method and conditions representing inner 

statuses and data. These conditions are HOCs. Fig.5 

shows an example of clarification of the components 

related to a hazard and HOCs. 

3.2.6 Planning HPC for each component 

The task “planning hazard prevention countermeasures 

for each component” analyzes the HOC and plans the 

HPCs. The inputs are components and HOC related to 

the hazard, and the output is the  HPC. Since hazards 

occur when executing the components, HOCs are 

“particular components executed under particular 

conditions.” Therefore, HPC is “not to occur the 

particular HOC” or “not to invoke the components when 

occurring the particular HOC.” Table 1 shows the list of 

standard HPCs that are developed by analyzing and 

summarizing the existing HPCs of the ECSW. HPCs for 

ECSW are decided by applying the countermeasure 

policies in Table 1 to the HOC of each component. 

 

 

Table1 Standard hazard prevention countermeasures for HOPs 

 

Countermeasure policy Standard hazard prevention countermeasures

Review the execution conditions

Conduct multiple checks when execute

Conduct the execution check

Review the not execution conditions for functions

Conduct multiple checks when not execute

Conduct not execution check

Conduct multiple checks on SOP

Improve the visibility of SOP indications

Conduct multiple checks on HMI

Improve the visibility of HMI

Check the content of HMI

Realize faster processing

Develop faster devices

The upper limit of calculation precision is confirmed Increase significant digits

The lower limit of calculation precision is confirmed Increase significant digits

Divided by zero Give a warning of division by zero

Refuse data

Do not input data

Restrict interruption tasks

Prohibit interruption tasks

Unexpected execution requests are not sent

Refuse unexpected execution requests
Unexpected CPU load occurs

Indications on Human Machine Interface (HMI) misread

The not execution condition of method are

reconsidered.

Input/Output

Multiple checks on input data

Unexpected amount of data is accepted

Prevention of

occurence for

specific condition

(HOC)

Unexpected

events

HOC

Execution of

method

CPU Load

Unexpected data update occurs

Unexpected interruption tasks occur

The execution conditions for method are reconsidered.

Input data error

Instructions on Standard Operation Procedure (SOP)

misread
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Fig.4 Correspondence between the UML System 

Specifications and CSD 

 

Fig.5 An example of clarification of components and 

HOC related to a hazard 

 

Fig.6 Outline of the railroad crossing control system 

 
Fig.7 Configuration of the railroad crossing 

control system 

4. APPLICATION AND EVALUATION 

OF THE PROPOSED METHOD 

Safety analysis for the railroad crossing control 

system (RCCS) is conducted to evaluate the method. 

 First, an outline of the RCCS is the same as the 

system written in [8]. Fig.6 shows the outline of the 

RCCS. RCCS consists of the control equipment, the 

railroad crossing and warning device, and sensors (two 

warning start sensors, A and B, and one warning stop  

  

 

Fig.8 CSD of the railroad crossing control 

system 

 

Fig.9 Hazard Scenario for the target system 

 

 

Fig.10 Sequence diagram corresponding to a 

hazard scenario  

 

Fig.11 State machine diagram for railroad crossing 

control class 

sensor, C. These sensors can't detect the direction of 

the train.) The following are the requirements for 

RCCS: 
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Table 2 List of extracted UCAs 

 

Table 3 Hazard scenarios derived from UCAs and guide words 

 

 

(1) When the ECSW detects a train using the sensors A 

or B, it starts warning after a period of time. 

(2) When the ECSW detects a train using the sensor C, 

it stops warning after a period of time. 

(3) When the train moves from A to C, sensor B is 

masked. 

(4) When the train moves from B to C, sensor A is 

masked. 

 

Next, the results of the hazard analysis are explained 

The task “definition of accidents and hazards” defines 

hazards and accidents. In this example, an accident is “a 

train and car collision at the railroad crossing,” and a 

hazard is “not to be able to close the railroad crossing 

when the train is in an area.” The task “development 

of UML system specifications” develops UML system 

specifications. Fig.7 shows the outline of the RCCS that 

the authors designed. The use-case diagram shows that 

the train actor and the sensor actors use the RCSS. The 

class diagram consists of the RCSS class, sensor class, 

and railroad crossing and alarm device. The task 

“analysis of unsafe control actions and development of 

hazard scenarios using STPA” develops the CSD, 

clarifies UCAs, and develops hazard scenarios. Fig.8 

shows the CSD of the RCCS. UCAs are extracted by 

applying “the 4 keywords to identify the UCAs that 

cause hazards” to the CSD. Table 2 shows a list of the 

UCAs. In addition, the hazard scenarios are derived by 

applying “the 13 guide words”. Table 3 shows the list of 

derived hazard scenarios. Subsequently, the case of 

“inappropriate control of the train when it turns back to 

the railroad crossing after passing the railroad crossing 

causes hazards” are analyzed. Fig.9 shows the hazard 

Control Action Not providing causes hazard Providing causes hazard
Too early/too late, wrong order causes
hazard

1
Close & start
warning

(UCA1)The train passes the railroad
crossing when not rumbling warning. (the
bar of the railroad crossing does not close.)
(SC1 violation)

The warning rumbles when the train does
not come.

(UCA2)The train arrives the railroad
crossing before rumbling the warning.
(closing bar is too late.)
（SC1 violation)

2
Open & stop
warning method

After the train passes the railroad crossing,
the warning rumbles.

(UCA3) The warning stops rumbling when
the startMask instruction is invocated.
(SC2 violation)

(UCA3)The warnin stops before the train
pssses the railroad crossing. (it is too early
to open the bar of the railroad crossing
after closing the bar.)
(SC2 violation)

3
startMask method
(Mask enable)

When the train that passes A and c arrives
B, the warning rubles again.

(UCA4)When the train does not arrive, the
startMask instruction invocates and the
warning does not rumbling.
(SC1 violation)

(UCA5)When the maskStart instruction to
the stop-warning sensor is delayed and is
not issued before the train passes the
sensor, the maskStart instruction will
remain and the warning will not be rumbling
in the case that two trains in the opposite
direction access continuously.
(SC1 violation)

4
stopMask method
(Mask disable)

(UCA6)As the stop maskStart instruction is
not issued to the start sensor on the
opposite side, the sensor does not start
the warning  even when the opposite train
accesses (including the case that the train
turn back after issuing the maskStart
instruction)
(SC1 violation)

The warning rumbles again. Issuing the stopMask instruction start
rumbling again, before the train passes B.

①Control input or external
information wrong or missing

②Inappropriate, ineffective or
missing control action

③Delayed operation
④Process input missing or
wrong

⑤Unidentified or out-of-range
disturbance

(UCA1)The train passes the
railroad crossing when not
rumbling warning. (the bar of
the railroad crossing does not
close.)

･inappropriate control for the
train that truns after the
railroad crossing passes.
・Competition with the
continuation of stop warning
and the new issue of start
warning.

･The failure of the sensor A
causes the missing of the
instruction from A to the
railroad crossing control.

(UCA2)The train arrive the
railroad crossing before
rumbling the warning. (closing
the bar is too late.)

・Delay of the warning device.

(UCA3) Rumbling warning is
stopped before the train
passed. (Opening the bar is too
early after closing the bar.）

C causes the short circuit by
the disturbance before the
train arrives the railroad
crossing after the train passes
A.

(UCA4)　When the train does
not arrive, the startMask
instruction invocates and the
warning does not rumbling.

・Inappropriate state control of
the railroad crossing.

(UCA5) the warning does not
rumble when the train comes
because of the delay of
issuring the maskStop
instruction.

・Delay of issuring the mask
stop instruction with the no
support for the high spped
train.

・Disturbance by the obstacle
on the rail.

(UCA6)The maskStart
instruction issues too late.

・Inappropriate external input
(disturbance） causes missing
of stopMask instruction.

・The delay of issuring the
instruction for the control
apparatus causes missing the
stopMask instruction.

・Inappropriate state control
causes the missing the
maskStop instruction.

・Inappropriate external input
causes the missing of
maskStop instruction.
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scenario at this point. The task “development of 

sequence diagrams corresponding to the hazard scenario” 

develops sequence diagrams corresponding to the 

hazard scenario. Fig.10 shows sequence diagrams 

corresponding to the hazard scenario. The task 

“clarification of the HW and SW components and 

conditions related to the occurrence of a hazard” 

clarifies the components related to the hazard. In Fig.10, 

after the train passes the sensor C, the RCCS masks the 

sensors A and B. Afterwards, the rear part of the train 

turns back and passes the sensor C. At this point, 

because the status of the crossing is open and the status 

of the warning device is stopping, the crossing and 

warning device do not act even if the RCCS issues the 

open instruction to the crossing and rumbling 

instruction to the warning device. Therefore, the train 

enters the railroad crossing when the status of the 

crossing is open and the status of the warning device is 

stopping, thereby leading to hazard. As a result, the 

components related to the hazard scenario are 

existTrain() and existNoTrain() of the railroad crossing 

control class. The task “planning hazard prevention 

countermeasures for the components” plans HPC for 

each component referring to the standard HPC. The 

existTrain() method invokes closeBar&start  Aram() 

method of the railroad crossing class. Even if this 

method is invoked, the bar of the railroad crossing is 

still closed, and only the warning device is sounded. 

Therefore, as there is low possibility of this hazard 

occurring, the countermeasures for this event are not 

applied. In contrast, the existNoTrain() method invokes 

openBar&stopAlarm() method in the railroad crossing 

control class. Generally, the existTrain() method and 

existNoTrain() method should be carried out in pairs. In 

addition, the existTrain() method and existNoTrain() 

method should be invoked alternately. Therefore, “the 

execution conditions for the method are reconsidered” 

of HOC in Table 2 is applied. In addition, the “conduct 

execution check” of the standard HPC is applied. In this 

case, the state transition diagram shown in Fig.11 is 

added to the railroad crossing class. In case the 

existNoTrain() message is received when the state is 

waiting for the train to pass, countermeasures, such as 

issuing emergency message to the safety supervisor (the 

method that issues the warning is added to the railroad 

crossing class) and sounding the warning are taken. 

These countermeasures prevent the occurrence of a 

hazard. As a result of applying the proposed method, 

hazards associated with the RCCS could be clarified, 

and appropriate countermeasures to avoid these hazards 

could be found. 

5.FUTURE WORKS 

This paper proposed an STPA method applied to 

hazard analysis for ECSW, developed based on the 

object-oriented design methodology. It clarifies the 

causes of hazards that arise from the interactions 

between a system’s components and develops a safe 

ECSW. However, it was observed that the proposed 

method requires a long time to analyze hazards and plan 

countermeasures. In particular, conflicts may arise 

between countermeasures chosen by the proposed 

method when analyzing hazards in complex systems 

because the system includes several components with 

several hazards and hazard scenarios. In the future, we 

will investigate a method that describes SCs using 

logical expressions and analyzes them automatically 

using logical calculations.  
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