
A Proposal for Fault Tree Analysis for Embedded Control Software

Masakazu Takahashi
1†

, Tomohiro Suzuki
2
, Yunarso Anang

3
, Reiji Nanba

4
, and Yoshimichi Watanabe

5

1, 2, 5
Department of Engineering, University of Yamanashi, Yamanashi, Japan

(Tel : +81-55-220-{8585, 8492, 8651}; E-mail: {mtakahashi, stomo, nabe}@yamanashi.ac.jp)
3
Dept. of Computational Statistics, Institute of Statistics, Jakarta, Indonesia

(Tel: +62-21-819-1437; E-mail: anang@stis.ac.id)
4
Department of Civil and Environmental Engineering, Daiichi Institute of Technology, Kagoshima, Japan

(Tel : +81-995-45-0640; E-mail: r-nanba@daiichi-koudai.ac.jp)

Abstract: In this paper, we propose a method of Fault Tree Analysis for embedded control software. The characteristics

of the proposed method are as follows; using FT templates corresponding to software instructions, using FT

development rules using reverse software slicing technique, and tools that develop FT mechanically. As a result of

applying the proposed method and the tool to the existing problem, we confirmed that the proposed method can develop

FT equivalent to FT created by a trained technician.

Keywords: Embedded Control Software, Safety Analysis, Fault Tree Analysis,

 1. INTRODUCTION

This paper proposes an adequate Fault Tree Analysis

(FTA) method for a specific fault of embedded control

software (ECSW) that is written in the C language and

installed into industrial products. We only deal with

ECSW written in the C language because many types of

ECSW are still written in the C language [1].

This paragraph describes the technical terminology

used in this paper related to software safety [2].

Nonconformance produced when software is being

developed is referred to as defects. Such defects existing

in software cause unexpected behavior. This behavior is

referred to as a fault. As a result of leaving such a faulty

state, the state becomes worsen, and the software fails to

fulfill the required functions. This condition is referred

to as a failure. Failure causes damage to the users and

the environment and is referred to as an accident.

Today, the action of industrial products where high

reliability is required, such as automobiles, industrial

plants, aircraft, and space equipment, is controlled by

ECSW. Whereas improvement of ECSW has increased

the functionality of industrial products, it has also made

such products more complicated. Complexity in ECSW

has tended to cause defects and faults within the

products that trigger failures. These failures have

resulted in causing accidents.

Therefore, software developers have been required to

adequately verify the reliability of ECSW, while

removing defects (simple program bugs) that could

cause accidents. To remove relatively simple defects,

software testing techniques have been used. However,

defects in ECSW are not only those of bugs but also

those that could occur stochastically, those that could

occur by the specific operational conditions, and those

that could cause by the functional degradation of

sensors. Therefore, safety analysis methods have

become important for removing these complicated

defects.

This paper proposes an FTA method to detect defects

of ECSW written in the C Language. FTA that targets

software is a method that analyzes the defects that could

cause specific accidents. This method traces the faults

from system level to program level via module level so

as to clarify the fundamental defects. Faults that can

occur to ECSW include, for example, the value of an

electrical current variable becomes greater, and the

value of an acceleration variable becomes greater.

Defects include hardware failures and abnormal timing

issues, such as frequent interrupts, and the timing of the

invalid data update. FTA can also be used to detect

simple defects. However, software testing technique can

detect defects more efficiently. Therefore, this paper

does not focus on detecting simple defects. The process

to trace defects is graphically described using logic

symbols. This graphic description has a tree structure so

that it is called a Fault Tree (FT). The characteristics of

the proposed method are as follows:

(1) Prepare FT templates in advance that correspond to

the statements in C.

(2) Prepare FT development rules to develop FT by

combining the FT templates.

(3) In accordance with the reverse execution sequences,

FT templates corresponding to the statements are

combined based on the FT development rules.

2. RELATED WORKS

Previous studies are divided into the establishment of

standards associated with software safety and the

examination of safety examination methods for ECSW.

First, let us focus on the establishment of standards

associated with software safety for each industry.

Various standards that have been established in the past

include ISO 26262 regarding ECSW development in the

automobile industry [3], GAMP5 in the pharmaceutical

industry [4], ICE 62304 in the medical equipment

industry [5], and DO-178C in the aviation industry [6],

and JAXA JMR-001 in the space equipment industry [7].

The contents of these standards are complicated. In

reality, it is difficult to enhance safety only based on the

analysis depending on the experience of engineers.

 † Masakazu Takahashi is the presenter of this paper.

Proceedings of the SICE Annual Conference 2018
September 11-14, 2018, Nara, Japan

978-4-907764-60-9 PR0001/18 ¥400 © 2018 SICE 1524

Next, let us focus on the safety analysis methods. The

safety examination methods are divided into methods to

exhaustively examine failure possibilities in the design

phase to clarify the causes, and methods to clarify the

cause of specific failures in the operation phase.

As for the former, Takahashi et al. defined standard

ECSW’s failure modes by analyzing the existing

pharmaceutical production facilities and proposed

FMEA method using those modes [8]. Snooke et al.

proposed code-level FMEA method by tracing the

failure between ECSW’s instructions [9]. Those FMEA

methods became to be applied to ECSW development

gradually. As for the latter, Leveson et al. proposed FT

templates for fundamental instructions. FT was

developed by combining the template [10]. Chen

proposed a safety analysis method that described

software as the finite state machine and conducted FTA

to it [11]. However, it was difficult to apply those FTA

methods to the ECSW, because those methods did not

define FT development procedure.

3. PROPOSED FTA METHOD

This section describes the proposed method.

Subsection 3.1 describes Leveson’s FTA method for

software which provides the fundamentals for this paper.

Then, subsection 3.2 outlines the FT templates and FT

development rules. Finally, subsection 3.3 describes the

outline of the proposed method.

3.1 Software FTA Method Proposed by Leveson

This subsection describes Leveson’s FTA method for

software, the basis for this paper [10].

A software program consists of a set of basic

statements, such as an assignment statement, a

conditional branching statement, and a module

(function) call statement. Therefore, FT templates that

correspond to these statements are prepared in advance.

Then an FT is developed by combining the FT templates

using logic symbols along the reverse execution

sequence. By repeating, this method clarifies the defect.

The following section outlines the FTA procedure.

First, the target fault is determined. Faults that occur to

ECSW are as follows; outputting an abnormal value,

executing a function or a module at the wrong timing,

and the impossibility of executing a function or module.

Second, a statement that causes the target fault is

identified. An action that may cause such an undesirable

situation is called an event. Especially, an event that

causes fault is called the top event, and events that are

causes of top event are called the intermediate event.

The intermediate events might include the followings:

the inadequacy of the algorithm, an abnormal value

input into the statement, and the execution of the

statement at the wrong timing. In the case of the

inadequacy algorithm, the algorithm is corrected. In the

case of an abnormal value input into the statement,

further analysis is conducted. In the case of the

execution of the statement at the wrong timing,

necessary correction is conducted, such as an execution

cycle, and timing for disabling and enabling interrupts.

Additionally, the relationships between the fault and the

intermediate events are described by using FT templates

and logic symbols. Third, a statement that causes

intermediate events is identified and analyzed into lower

intermediate events. In the same way, the relationships

between upper and lower intermediate events are

described by using FT templates and logical symbols.

Those steps are repeated until the intermediate events

can no longer be traced. The intermediate events which

finally remain are the defects. However, the rules for

tracing events and combining FT templates were not

defined. Hence, the integrity of the developed FT

depends on the engineer’s skills. As a result, another

engineer who has not enough skills cannot develop the

adequate FT.

3.2 FTA using reverse slicing and development rules

This section outlines the fault occurrence process in

ECSW, FT templates, and FT development rules.

(1) Fault occurrence process in ECSW

Let us consider how a fault occurs in ECSW. Suppose

the following case that takes place: There is an ECSW

that operates properly until a certain statement is

executed, but when the next statement I0 is executed, an

event that differs from the normal condition occurs. This

event is considered to be the cause of a fault and

described as <Event0>. As the statements are executed,

the ECSW's status gradually becomes to differ from the

normal condition. Suppose that <Eventj> occurs when Ij

is executed. Finally, suppose that <Eventn> occurs when

In is executed while this event is recognized as a fault.

The chain of statement execution, from the execution of

I0 until the fault <Eventn> occurs after In is executed, is

shown in the description below.

I0<Event0>I1<Event1>...Ij-1<Eventj-1>Ij<Eventj>...In<Eventn>

Therefore, by regarding with <Eventn> and In, where

the fault occurs, and In as the starting point, tracing the

chain of statement executions inversely can reach

<Event0> and I0. Here, Ij-1 that is executed previously

from Ij can be obtained by inversely tracing the program

slicing (hereinafter, slicing) results. Slicing is a method

to extract all the statements in the program that affect

the execution result of a particular statement in the

program. A set of statements extracted is referred to as a

slice. The slice includes statements that are

data-dependent and that are control-dependent. Here, Ij-1

is data-dependent on Ij. This indicates that the values of

variables set in Ij-1 might be referred to by Ij. Ij-1 is also

control-dependent on Ij. This indicates that Ij-1 is a

branch statement that includes Ij, or that Ij-1 is a loop

statement that includes Ij. Accordingly Ij-1 is a statement

that assigns values to variables used for Ij or that

satisfies the preconditions (the conditions satisfied

before the statement’s execution) for executing Ij. As for

reverse tracing procedure, FT development rules that are

preliminarily prepared can be used to trace execution

procedure mechanically. The trace from <Eventj> to

<Eventj-1> related to Ij is prepared as the FT Templates.

The templates can determine the change mechanically.

1525

For all these reasons, the proposed method uses

reverse program slicing and FT templates for tracing the

statement’s execution sequence of ECSW inversely.

After the following subsection, from the

understandability of the algorithm, the subscript

numbers of Event and I are in reverse order. Namely, I0

and <Event0> indicate the point in time when a fault

occurs, while In and <Eventn> indicate the point in the

time when the cause occurs.

(2) FT templates

This subsection describes the details about FT

templates that are used for FT development. The C

language has numerous statements. It takes long time to

prepare FT templates for all the statements. Therefore,

we prepared nine FT templates that are frequently used.

In the case that a new statement appears, a new FT

template is developed. As templates merely define the

relationship between events, adding new FT templates

do not affect other templates.

(a) Assignment statement

Fig. 1 shows the FT template for the assignment

statement. This template indicates that assignment

statement causes the event because the value assigned

and/or the operand used causes the event.

(b) Block if statement

Fig. 2 shows the FT template for the block if

statement. This template indicates that block if

statement causes the event because one or more

conditions cause the event. Moreover, this template

also indicates that the event is caused when the i-th

condition is satisfied and the i-th clause causes the

event.

(c) While statement

Fig. 3 shows the FT template for the while statement.

This template indicates that while statement causes the

event because the statement itself is not executed

because of failing to satisfy the repetition conditions

and/or because of executing the repetition n times.

(d) Function call

Fig. 4 shows the FT template for the function call.

This template indicates that this function call causes the

event while failing to call the function and/or while

successfully calling the function.

(e) Interrupt

Fig. 5 shows the FT template for the interrupt. This

template indicates that interrupt causes the event

because the interrupt occurs or did not occur. The

former indicates that the event occurs when the interrupt

occurs and the interrupt routine is executed. The latter

can be divided into the case where an interrupt does not

occur and the case where interrupts are disabled. Where

an interrupt does not occur, the event occurs because no

interrupt occurs and the interrupt routine is not executed.

Where interrupts are disabled, the event occurs because

the interrupts are disabled.

(f) Global variables

 Fig. 6 shows the FT template for global variable. This

FT template indicates that one or more global variables

used at n locations in ECSW cause the event.

Fig.1 The FT templates for the assignment statement.

Fig.2 The FT template for the block if statement

Fig.3 The FT template for the while statement

Fig.4 The FT template for the function call

Fig.5 The FT template for the interrupt

Fig.6 The FT template for the global variable

Fig.7 The FT template for the array

Fig.8 The FT template for the pointer

Fig.9 The FT template for the non-execution

assignment stmt. causes event

Inputted value causes event operand causes event

Block if stmt. causes event

・・・

1st cond. true
prior to if inst.

1st inst. gr.
cause event

nth cond. true
prior to if inst.

nth inst. gr.
cause event

else inst. true
prior to if inst.

else inst. gr.
cause event

・・・

while stmt. causes event

stmt .not executed stmt. executed n times causes event

event prior to
while stmt.

cond. false
prior to while

cond. true
prior to while

nth iteration causes event

function (p1, p2, - - -)causes event

p1, p2, - - - causes event function fails causing event

interrupt routine causes event

interrupt
occurs

execution of module
causes event

interrupt doesn’t occur non-execution of module causes event

interrupt occurs interrupt does not occurs

interrupt
disabled

global variables causes event

・・・.

・・・.global variable-1 causes event global variable-n causes eventglobal variable-2 causes event

Element N of Array causes event

Element N does not exist Element N exists

Number of Elements is less than N Value of Element N is incorrect

pointer causes event

Address does not exist address exists

Value of address is incorrect Content pointed by address is incorrect

Stored content is incorrectValue of address is incorrect

non-executable statement causes event

・・・.

・・・・・・・・.module fails exec.? 1st statement fails exec.? nth statement fails exec.?

1526

(g) Array

Fig. 7 shows the FT template for the array. This FT

template indicates that the array causes the event

because there is no n-th element (out of range, illegal

index access) and/or the n-th element contains an

improper value.

Fig.10 FT development procedure

Fig.11 Outline of the proposed method

Fig.12 Overview of ECSW

Fig.13 Program code of ECSW -Excerpt-

Fig.14 Leveson's FT for "PERIOD too high" -Excerpt-

(h) Pointers

Fig. 8 shows the FT templates for the pointer. This

template indicates that the pointer causes the event

because there is no address that the pointer refers or the

address referred by the pointer contains an improper

value.

(i) Non-Execution

Fig. 9 shows the FT template for the non-execution of

statements. This template indicates that the non-

execution of the target statement (n-th statement from

the head of the function) causes the event because of the

non-execution of the function or the non-execution of

the i-th (i < n) statement (the process cannot reach the

n-th statement because of an infinite loop etc.).

The FT template for the nested statements is

considered. Where the trace target statement is included

in control target statement, such as the block if and the

while statement, the sequence of the inverse trace is

from the trace target statement to the control target

statement. As the control target statements including the

trace target statement are considered to be one statement

as Ij, and an FT is developed for this statement Ij.

Hereinafter, these control target statements including the

trace target statement are called block statements.

Where a control target block statement is nested with

multiple layers, the scope of the outermost nest is

regarded as Ij. Those nests are numbered from external

nest to internal nest (the outermost nest is 1, while the

innermost nest is n).

STEP1: Identify the statement that cause the top event (fault).
A) j = 0.
B) Define the target event, and describe it as the top event.
C) Identify the statement (Ij) that causes the top event.
D) Select a FT template that corresponds to Ij , and regard it the developed FT (initial state of the developed FT)
E) Fill the developed FT.
F) Identify the Eventj when the Ij causes the event.
G) Go STEP2

STEP2: Identify the statement(s) that is (are) previously executed.
Identify the statement (or statements) Ij+1 that is (or are) executed before Ij by analyzing Eventj.
A) When Eventj contains global variables.

i. Identify where all variables (global and local variables) exist (as set), and decide the all statements Ij+1

ii. Connect FT template for global variables to the developed FT, and Fill the developed FT using Ij+1.
iii. Go STEP3.

B) When Eventj contains Local variables.
i. Identify where all variables exist, and decide the all statements Ij+1 that are sets the values to the local

variables immediately before
ii. Connect FT template for assignment to the developed FT, and Fill the developed FT using Ij+1.
iii. Go STEP3.

C) When Eventj contains global and local .
i. Conduct a + b.
ii. Go STEP3.

D) When Eventj cannot trace any more.
i. Finish FTA.

STEP3: Develop partial FT corresponding to the statement that cause the event
A) When Ij+1 is block statement (initial number of nest number is k=1.)

i. When nest number k is greater than (>) nest number that trace target statement exists.
a. FT template corresponding to statement that has the nest number k is connected with (added to)

the developed FT.
b. Fill the FT template corresponding to statement that has the nest number k.
c. k = k +1．
d. Return to top of STEP3.

ii. When nest number k equals to (=) nest number that trace target statement exist.
a. FT template corresponding to trace target is connected with (added to) the developed FT.
b. Fill the FT template corresponding to Ij+1.
c. The content in FT template is set into Eventj+1 .
d. j = j + 1.
e. Return STEP2.

B) When Ij+1 is not block statement.
a. FT template corresponding to Ij+1 is connected with (added to) the developed FT.
b. Fill the FT template corresponding to Ij+1.
c. The content in FT template is set into Eventj+1.
d. j = j + 1.
e. Return STEP2．

Target
ECSW

Extract
ECSW

Information

Develop
Fault Tree

Target
Program

ECSW
Information

Target
Fault

FT
Templates

FT
Development

Rules

[FT Development Procedure]

Use Use

[Prepare FT Templates and Development Rules before Developing FT]

: Process

: Data

: Database

FireWheel
control program main

vbrh
monitor

spin
restart3 restart4

timer interrupt

sun pulse
interrupt

message
interrupt

wdcss

period length gason gasoff motor on motor off

period
length

spinok

spinok

period,
length

: module/function

: branch (decision)

: repeat (loop)

: module call
: data set/use

: global data

: return value

000: int SUNP , MAGP ;
002: int DNCTR , DNMAX , THETA ;
003: int WDCSS , WDCTR , LASTP, WDLOST, L1 ,
L2 ;
009:
010: int SAMPLE (int SAMPLE_ARG) {
011: return SAMPLE_ARG ;
012: }
013:
014: int PERIOD () {
015: int MS ;
016: int SUN , MAG ;
017: bool ifc1 , ifc2 ;
018: ifc1 = SPINOK (SUNP) ;
019: ifc2 = SPINOK (MAGP) ;
020: if (ifc1 == true) {
021: MS = SUN ;
022: }
023: else {
024: if (ifc2 == true) {
025: MS = MAG ;
026: }
027: else {
028: MS = SUN ;
029: }
030: }
031: if (MS == SUN) {
032: return SUNP ;
033: }
034: else {
035: return MAGP ;
036: }
037:}

050: void RESTART4 () {
051: if (DNCTR != 1) {
052: DNCTR = DNCTR - 1 ;
053: }
054: else {
055: DNCTR = DNMAX ;
056: THETA = (THETA + 1) %
057: }
058: WDCSS = WDCSS + 1 ;
059: WDCTR = WDCTR + 1 ;
060:
061: int sw_cond ;
062: sw_cond = WDCTR % 16 ;
063:
064: if (sw_cond == 14) {
065: TL1 = SAMPLE (L1) ;
066: }
067: else if (sw_cond == 15) {
068: TL2 = SAMPLE (L2) ;
069: }
070: }
071:
072: void RESTART3 () {
073: SUNP = min (LASTP , WDCSS) ;
074: int restkari ;
075: restkari = (SUNP + 64) / 128 ;
076: DNMAX = min (restkari , 255) ;
077: DNCTR = DNMAX ;
078: THETA = 0 ;
079: LASTP = WDCSS ;
080: WDCSS = 0 ;
081: }

Period too high

PERIOD: = SUNP
causes too high value

PERIOD: = SUNP
causes too high value

SUNP is too high MS = SUN

LAST-SPIN
is too high

previous WDCSS
too high

WDCSS := 0
missed in prior

spin

sun pulse
missed

clock too
often

WDCSS is
is too high

sun pulse
missed

clock too
often

SUNP is too high MS ≠ SUN

SPIN-OK(MAGP)
= false

MAGP
< 100

MAGP
> 65000

SUNP
< 65000

SUNP
> 100

SPIN-OK(SUNP)
= true

(Same as SUNP branch) (Same as MS = SUN branch)

EVENT I

EVENT II EVENT III

EVENT IV

EVENT V

EVENT VI

EVENT VII

1527

(*1)
├─────────── ───┐

0 : START
150 : in L32, WDCSS is too
large.

151 : in L32, LASTP is too
large.

｜ ｜ ｜

4 : return value of function
PERIOD is too large.

201 : value of global variable
WDCSS is incorrect.

(omit)

｜
｜

OR
├─────────── ─────────────── ───┬─────────── ───┐

5 : one of return value of
function PERIOD is incorrect.

162 : in function VBRH, as a
result of assginment, value is
too large.

161 : in function RESTART3,
as a result of assignment,
value is too large.

176 : in function RESTART4,
as a result of assignment,
value is too large.

OR
├───────────
｜

─
─
──
─
┐

｜
｜

｜
｜

｜
｜

6 : in L32, return value is
incorrect.

8 : in L35, return value is
incorrect. 165 : formula

WDCSS+WDLOST is too large.

205 : in node numebr 187,
same trace with same
condition.

192 : in interrupt RESTART4,
as a result of assignment into
variable WDCSS, value is too
large.｜

｜
｜
｜

OR
├─────────── ─

─
──
─
┐

｜
｜

｜
├─────────── ───

─
┐

7 : in L32, return value SUNP
is too large.

9 : in L35, MAGP is too large.
166 : in L91, WDCSS is too
large.

167 : in L91, WDLOST is too
large.

206 : go to node number176.
194 : number of interrupt is
incorrect.

193 : in L58, increment of
assignment into variable
WDCSS is incorrect.

｜
｜

｜ ｜ ｜ ｜ ｜

26 : in L32, as a result of
assignment into variable SUN
from SUNP, value is too large.

(omit)
174 : value of global variable
WDCSS is incorrect.

168 : value of global variable
WDLOST is incorrect.

195 : interrupt too much. 196 : formula +1 is too large

｜ ├─────────── ──────────────── ─ ──┐
27 : in L31, in IF statement,
value of assginment into
variable SUNP is too large.

166 : in L91, WDCSS is too
large.

167 : in L91, WDLOST is too
large.

197 : in L58, 1 is too large.

｜ ｜
｜

｜
｜

｜
｜28 : in L31, as a result of

execution of clause, value is
incorrect.

174 : value of global variable
WDCSS is incorrect.

168 : value of global variable
WDLOST is incorrect.

198 : constant 1 is too large.

AND
├─────────── ─

─
──
─
┐

OR
├─────────── ───

─
┐

｜
｜

｜
｜
｜29 : in L32, as a result of

assigmnent into variable SUN,
value is too large.

30 : in L31, as a result of
satisfaction of clause, value is
incorrect.

177 : in function RESTART3,
as a result of assignment,
value is too large.

176 : in function RESTART4,
as a result of assginment,
value is too large.

170 : previous assginment into
variable WDLOST is incorrect.

193 : in L58, increment of
assignment into variable
WDCSS is incorrect.

｜
｜

｜
｜

｜ ｜ ｜ ｜
｜

135 : in L32, SUNP is too large.
31 : in L31, formula MS==SUN
is True and incorrect.

187 : in interrupt function
RESTART3, as a result of
assignment into variable
WDCSS, value is too large.

199 : in node number 176,
same trace with same
condition.

171 : in L90, as a result of
assignment into variable
WDLOST from 64, value is too
large.

196 : formula +1 is too large

｜
｜

｜
｜

｜ ｜ ｜ ｜
｜

136 : value of global variable
SUNP is incorrect.

38 : in L31, as a result of
assignment into variable
MS==SUN from MS=SUN,
value is True and incorrect.

｜
｜
｜
｜

200 : go to node number 176. 172 : in L90, 64 is too large. 197 : in L58, 1 is too large.

｜
｜

｜
｜

OR
├─────────── ───┐

｜

｜
｜

138 : in function RESTART3,
as a result of assignment,
value is too large.

39 : formula MS==SUN is True
and incorrect.

188 : in L80, as a result of
assignment into variable
WDCSS, value is too large.

189 : satisfy condition of
interrupt.

198 : constant 1 is too large.

｜ ｜ ｜
｜139 : in interrupt function

RESTART3, as a result of
assginment into variable
SUNP, value is too large.

(omit)

190 : in L80, 0 is too large.

OR
├─────────── ─

─
─┐

｜
｜

140 : in L73, as a result of
assignment into variable
SUNP, value is too large.

141 : satisfy condition of
interrupt.

191 : constant 0 is too large.

｜
｜142 : in L73, SUNP is too large.
｜
｜143 : return value of function
min is too large.

AND
(*1)

EVENT IV

EVENT V

EVENT II

EVENT III

EVENT I

EVENT VI

EVENT VII

Fig.15 Our FT for "PERIOD too high" –Excerpt-

(3) FT development rules

Fig. 10 shows the proposed FT development rules.

The FT development rules consist of three steps. In step

1, a statement that causes a fault is clarified. While the

FT template that corresponds to the statement is defined

as the developed FT, the event is described. In step 2,

according to the valid scope of the variables described

in the events included in the developed FT, FT

templates for the global variables and the local variables

are connected to the developed FT. This process can

clarify all the statements that might cause the event

concerned. In step 3, the FTs that correspond to all the

statements that might cause the event are connected to

the developed FT in order to clarify an event. Where

statements are block statements, the FTs that correspond

to the nested statements are connected to the developed

FT in order to clarify the event. The development

process for the nested statement then returns to step 2.

These steps are repeated for the depth of the nest layers.

Sometimes, the process gets out of the nests. Steps 2

and 3 are repeated until the event can no longer be

traced. The events that are reached finally are identified

as the defects.

3.3 Outline of the proposed method

Fig.11 overviews the proposed method. The proposed

method consists of the preparation phase and the

implementation phase.

In the preparation phase, the existing ECSW is

analyzed to clarify statements that are frequently used

(described in section 3.2 (2)), and FT templates are

developed. The rules associated with FT development

are also defined as FT development rules (described in

section3.2 (3)). Those templates and rules are used in

the implementation phase.

 In the implementation phase, an FT is developed

according to the FT templates and the FT development

rules. First, the target ECSW structure is analyzed in

order to extract ECSW information that is used, such as

variables, functions, assignments, and various

statements. Second, an FT is developed applying the FT

templates and the FT development rules based on the

target ECSW (source code), the target fault, and ECSW

information. In this study, we tried to develop an FTA

support tools for the proposed method. We developed

these tools in C based on Windows 7 OS. FTA support

tools consist of the ECSW analysis tool and the FT

development tool.

1528

4. APPLICATION AND EVALUATION

We evaluated the proposed method by applying it to

Leveson's example (spinning satellite which spins too

fast). Two engineers with three or more years of

experience in failure analysis evaluated the Leveson's

FT and an FT that is developed applying the proposed

method (hereinafter, our FT) individually.
An over-speed in spinning produces excessive

centrifugal force and damages the satellite's booms.

With regard to this accident, Leveson implemented

system-level FTA. It is confirmed that a fault can cause

an accident when the value of the variable PERIOD

became greater (PERIOD too high) or the value of the

variable LENGTH became smaller (LENGTH too

low).Fig.12 overviews the ECSW, and Fig.13 shows the

program (that is rewritten in the C language because

original program is written in Pseudo Pascal). Fig.14

shows Leveson’s FT (Fig.14 is shown in reference [10]

as Fig.8), and Fig.15 shows our FT (To improve

readability, display parameters of Fig.15 were edited).

We compared and evaluated these two FTs of

"PERIOD == SUNP" causes too high value (EVENT II

in Fig.16)" in "PERIOD too high". Leveson’s FT

included 18 events, while our FT developed by the

proposed method included 72 events. There were

various reasons why our FT included a larger number of

events. The analyzer of Leveson’s FT omitted an interim

progress, while the analyzer of our FT did not omit

anything because of strictly applying the FT

development rules, and assignment statements with

multiple arguments were split into a combination of

assignment statements with two arguments (for example,

EVENT VII in Fig.14 includes only 3events, while

EVENT VII in Fig.15 includes 40 events). We analyzed

the correspondence between Leveson’s FT and our FT.

Groups of events included in our FT, which are

indicated by areas enclosed by dotted lines, corresponds

to each event in Leveson’s FT. This analysis confirmed

that both FTs have almost the same structure. Finally,

we examined detected defects. Leveson’s FT detected

the following defects: the sun pulse was missed, and the

clock ran too fast. On the other hand, our FT detected

the following defects: RESTART3 did not satisfy the

condition of the interrupt, and RESTART4 interrupted

too frequently (Those are gray painted events).

RESTART3 is triggered by the sun pulse interrupt.

While the indication differs, the defect that the sun pulse

was missed and the defect that RESTART3 did not

interrupt are the same in meaning. Since RESTART4 is

triggered by the clock interrupt, the defect that the clock

ran too fast and the defects that RESTART4 interrupted

too frequently are the same meaning. These confirmed

that the proposed method detected defects properly.

For the fault of "LENGTH too low," as a result of the

comparison, it is confirmed that the proposed method

detects defects properly.

As a result, the proposed method can develop an FT

properly, and the FT structure itself remains the same.

Readability of our FT was more understandable than the

Leveson's, because of no omission of middle events.

5. FUTURE WORKS

In this paper, we proposed an FTA method for ECSW

and prototyped support tools. We applied our proposed

method and support tools to the faults of Leveson’s

example. As a result, the proposed method could

develop an appropriate FT and detected defects properly.

Our support tools could implement FTA automatically.

Use of our proposed method and support tools can

develop an FT without any omission of interim progress.

This provides the reproducibility of FT development

that does not depend on the experiences or skills of the

engineer. On the other hand, our FT makes indication

complicated because of many intermediate events. We

will develop the method to simplify indication using

logical operation. Additionally, we will apply the

proposed method and tools to large-scale ECSW, and

we reflect the results to them.

ACKNOWLEGEMENT

This research was supported by the Scientific Research

Grant of the SUZUKI foundation “A Safety Analysis

Method Cooperating FMEA, FTA, and HAZOP for

Embedded Control Software.”

REFERENCES

[1] Information-Technology Promotion Agency, White

paper of Embedded Software Development, 2017.

[2] N. Suzumura, “Section2 Understanding of

Fundamental of Safety Design”, Design Wave Magazine,

No.109, pp.27-33, 2006.

[3] International Organization for Standardization,

ISO26262 Road vehicles – Functional safety, 2011.

[4] International Society for Pharmaceutical

Engineering: GAMP5 A Risk-Based Approach to

Compliant GxP Computerized Systems, 2008.

[5] International Electro technical Commission, ICE

62304 Medical Device Software, 2006.

[6] Radio Technical Commission for Aeronautics,

DO-178C Software Considerations in Airborne Systems

and Equipment Certification, 2011.

[7] Japan Aerospace Exploration Agency, JMR-001

System Safety Standard, 2008.

[8] M. Takahashi, R. Nanba, and Y. Fukue, “A Proposal

of Operational Risk Management Method Using FMEA

for Drug Manufacturing Computerized System”, Trans

of SICE, Vol.48, No.5, pp.285-294, 2012.

[9] N. Snooke and C. Price, “Model-driven automated

software FMEA”, Proc. of Reliability and

Maintainability Symposium, 7pages, 2011.

[10] N. Leveson and P. Harvey, “Analyzing Software

Safety”, IEEE Trans. on Software Engineering, Vol.9,

No.5, pp.596-579, 1983.

[11] C. Chen, F. Zeng, and M. Lu, “A Verification

Method for Software Safety Requirement by Combining

Model Checking and FTA”, Proc. of International

Industrial Informatics and Computer Engineering

Conference, pp1359-1364, 2015.

1529

