
IJCAT - International Journal of Computing and Technology, Volume 5, Issue 1, January 2018
ISSN (Online) : 2348-6090
www.IJCAT.org

1

An Efficient Merging Method for Code Clones and
Gapped Code Clones Using Software Metrics

1 Masakazu Takahashi; 2 Yunarso Anang; 3 Reiji Nanba; 4 Yoshimichi Watanabe

 1,4 Graduate School Dept. Div. of Engineering, , University of Yamanashi

4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan

2 Dept. of Computational Statistics, ,Institute of Statistics

JI. Otto Iskandardinata No. 64C, Jakarta Timur, 13330, Indonesia

3 Dept. of Environmental Engineering, Daiichi Institute of Technology

1-10-2 Kokubu-Chuo, Kirishima, Kagoshima, 899-4395, Japan

Abstract - A program fragment that is created by copying & pasting an existing program is called Code Clone (CC). A program

fragment that some instructions are added, deleted, and modified is called Gapped Code Clones (GCC). In general, many CCs and

GCCs that exist in the program decrease readability and maintainability of the program. This study proposes an effective detection

method of CCs and GCCs that are suitable for merging by calculating software metrics related to the complexity of the control flow,

independent from other program portions, and non-dependency of programming language specification. Additionally, this study

recommends the merging procedure of CCs and GCCs by calculating software metrics related to the program structure of CCs and

GCCs. As a result of the application of the proposed method to the existing programs, it is confirmed that the adequate merging of CCs

and GCCs is conducted.

Keywords - Code Clone, Gapped Code Clone, Merging, Refactoring, Maintainability, Readability

1. Introduction
hen a function is added to a certain

program, we occasionally copy and paste part

of the program by conducting minor changes to

the variables and constants so as to achieve the

function. This results in existing many similar

fragments within the program. Such program fragments

are referred to as code clones (hereinafter referred to as

CCs). [1] Additionally, for some CCs, instructions are

added, deleted, or modified. These CCs that have

differences are referred to as gapped code clones

(hereinafter referred to as GCCs). [2] In the following

sections, CCs and GCCs are described as CCs/GCCs.

CCs/GCCs that exist in the program may reduce

software maintainability. Therefore, software engineers

have considered that they want to merge CCs/GCCs into

one location. However, it has been clarified that there

exist different types of CCs/GCCs, such as those that are

never modified and those with less readability and less

effectiveness in spite of a required cost when merging.

Hence, a method for selecting CCs/GCCs that are

expected to improve readability and maintainability by the

merging and for proposing CCs/GCCs merging type and

procedure are desired. Through this paper, focusing on

programs developed by using Java, we propose a method

for detecting and for merging functionally coherent

CCs/GCCs that are independent of other program

portions. This method efficiently detects and merges

CCs/GCCs that are effective in merging. There are

several units for detecting CCs/GCCs, such as characters,

tokens (a group of characters separated with spaces or

semicolons), lines, blocks (a group of code lines such as if

blocks or methods), and other similar items.

In this paper, we attempt to detect CCs/GCCs in units of

code lines or blocks so that they are designed as a method

or a class that is commonly used within the program. To

detect CCs/GCCs, we apply the Smith-Waterman

algorithm (hereinafter referred to as SWA) which can

detect similar portions within a character string. Then the

proposed method calculates the software metrics

(hereinafter referred to simply as metrics) for the

functionality of the CCs/GCCs and determines the

CCs/GCCs that should be merged. Finally, the proposed

method proposes the proper CCs/GCCs merging type and

procedure by calculating the metrics that are associated

with the program structure of CCs/GCCs. We apply the

proposed method to the existing programs to evaluate

W

IJCAT - International Journal of Computing and Technology, Volume 5, Issue 1, January 2018
ISSN (Online) : 2348-6090
www.IJCAT.org

2

whether CCs/GCCs are adequately and efficiently merged

or not by the proposed method.

2. Related Studies for Detecting and Merging

CCs/GCCs

Related studies can be broadly classified into those related

to CCs/GCCs detection, those related to the

characteristics of CCs, those related to software metrics,

and those related to refactoring.

This section describes studies related to CCs/GCCs

detection. The studies related to CC detection can roughly

be categorized into the studies on detection methods in the

program unit, and on detection methods focusing on the

program structure. The LCS algorithm is a representative

algorithm for detecting CCs in the program unit. [3] The

LCS-based CC detection method detects CCs by obtaining

the longest common subsequence for the units of the

functions, methods, and blocks which are included in the

source code. [4] The CC detection method that focuses on

the program structure analyzes the program and expresses

the program structure by using a syntactic tree or

dependence graphs in order to detect similar structures.

By doing so, this method detects CCs. [5, 6] Murakami

proposed a method for detecting GCCs within the

program in a token unit by using the SWA [7, 8] which

detects similar fragments from two character strings. [9]

This section describes studies related to the characteristics

of CCs. At first, it was considered that CC should be

merged. However, Higo et. al indicated the issue that

some CCs remained unmodified when certain CCs were

modified. [10] They made it possible to detect such

unmodified CCs by checking the conflicts in the variables

existing in the CCs. Gode et. al analyzed the frequencies

and risks of changing CCs. They indicated that

approximately 50% of CCs were unchanged, and

approximately 10% of CCs were changed more than twice.

They also indicated when the CCs were changed twice or

more, they have a negative effect due to careless

mismatches. [11]

This section describes studies related to the program

metrics. Fenton reported a wide variety of metrics that

could be used for software development. [12] Furthermore,

Hatano et al. proposed a method for clarifying the

program structure by using C & K metrics for programs

written by the object-oriented programming language, so

as to rewrite the program structure into a more proper

structure based on the program structural values. [13]

This section describes studies related to refactoring.

Refactoring is a technique to rewrite the existing program

into a new program with an adequate program structure

without making any changes in the existing program’s

functions. Fowler proposed a representative refactoring

method. [14] Higo et al. developed a tool called Aries that

selects CCs suitable for refactoring within the program.

[15]

3. Selecting CCs/GCCs and Proposing a

Merging Method

The proposed method extracts CCs/GCCs from the target

program and calculates their metrics. Based on these

values, the proposed method selects CCs/GCCs that can

be merged and proposes an efficient merging method.

First, section 3.1 explains the outline of the proposed

method. Section 3.2 explains individual techniques that

compose the proposed method. Section 3.3 describes

support tools.

3.1 Outline of the Proposed Method

Fig.1 shows the outline of the proposed method. The

proposed method consists of five steps. STEP 1 detects

CCs/GCCs that exist within the target program. STEP 2

calculates the metrics of each CC/GCC. STEP 3 selects

the candidates of CCs/GCCs that can be merged

effectively by using calculated metrics. STEP 4 calculates

the metrics related to the program structures of these

candidates and proposes a merging method based on the

calculated metrics. STEP 5 merges CCs/GCCs in

accordance with the proposed merging type and procedure.

IJCAT - International Journal of Computing and Technology, Volume 5, Issue 1, January 2018
ISSN (Online) : 2348-6090
www.IJCAT.org

3

Target

program

STEP1:

Detect

CC/GCC

CC/GCC

list

STEP2:

Calculate

metrics

Values of

metrics for

CC/GCC

STEP3:

Select

mergeable

CCs/GCCs

Candidates of

mergeable

CC/GCC

STEP4:

Determine

merging type

and procedure

Merging

type and

procedure

STEP5:

merge

CC/GCC

Modified

program

: Process : Data : Data flow

Fig. 1 Outline of the Proposed Method

:

Human h(“Jhon”);

for (int I = 0; I < 10; i++){

h.getName();

}

:

:

Human h (“ Jhon ”) ;

for (int i = 0 ; i < 10 ; i + +) {

h . getName () ;

}

:

Block Information ON

:

Human h (“ Jhon ”) ;

for (int i = 0 ; i < 10 ; i + +) {

h . getName () ;

}

:

Block Information ON

:
$ $ (“$”);

for (int $ = $; i < $; $++){

$.$();

}

:

Block Information ON

:
$ $ (“$”);

for (int $ = $; i < $; $++){

$.$();

}

:

Block Information ON

(a) Original program (b) Result of token analysis (c) Result of replacements

(d) Hash value of each line

(e) Character string of hash value (f) Table for CC/GCC detection

20 30 2 31 10・・・・

30 4 510 20 ・・・・
(continue)

20 30 2 3 10 4 520 30 ・・・・

30

2

3

10

4

5

20

30

1

10

20

1 10

・
E・E・
E・E

0

0

0

0

0

0

0

0

0

0

0

・
E・E・
E・E

0 0 0 0 0 0 0 0 0 0 0 ・・・・

・・・・

・・・・

・・・・

・・・・

・・・・

・・・・

・・・・

・・・・

・・・・

・・・・

・・・・

・
E・E・
E・E

・
E・E・
E・E

・
E・E・
E・E

・
E・E・
E・E

・
E・E・
E・E

・
E・E・
E・E

・
E・E・
E・E

・
E・E・
E・E

・
E・E・
E・E

・
E・E・
E・E

・
E・E・
E・E

0

:

1

10

20

30

:

Fig.2 Creation of SWA Table for Detecting CCs/GCCs

IJCAT - International Journal of Computing and Technology, Volume 5, Issue 1, January 2018
ISSN (Online) : 2348-6090
www.IJCAT.org

4

3.2.1 Detect CCs/GCCs (STEP1)

This section describes STEP 1 shown in Fig.1. By using

the SWA, STEP 1 detects CCs/GCCs that exist within the

target program. The SWA is an algorithm that detects

similar partial character strings within character strings.

The proposed method calculates the hash value in each

code line of the target program and creates a string that

consists of a sequence of hash values. Then by detecting

matched portions in the sequence of hash values, the

proposed method detects CCs and GCCs. The SWA uses

parameters of {match, mismatch, gap}. Varying these

parameters can change the size of the tolerable gap. Here,

“match” indicates the weight when compared characters

within the string match, “mismatch” indicates the weight

when compared characters do not match, and “gap”

indicates the weight when a character is inserted into the

matched partial character strings.

The following describes how to detect CCs/GCCs by

using the SWA. Here, the value for each of match,

mismatch, and gap is set as 1, -1, and -1, respectively.

(1) Create a table for CCs/GCCs detection

(a) By analyzing the program of Fig.2 (a), identify tokens

as shown in Fig.2 (b).

(b) As shown in Fig.2 (c), replace the variable names,

values, function names, sub-routine names, class

names, and method names with special characters, for

example "$". This replacement absorbs differences

accompanied with lesser modifications.

(c) As shown in Fig.2 (d), identify portions (code lines)

separated with “{ }” and “;” in order to hash each

code line.

(d) As shown in Fig.2 (e), create strings while setting the

hash of each code line to one character. Here, the

number of characters (the number of program code

lines) is expressed as m.

(e) Create a two-dimensional table with m+2 rows and

m+2 columns. Thereafter, each cell of row i and

column j is expressed as c(i, j), while the value of c(i,

j) is expressed as vi, j.

(f) As shown in Fig.2 (f), store string elements from v1,3 to

v1,m+2 in sequence. Similarly, store string elements

(hash values) from v3,1 to vm+2, 1. Afterward, enter 0

(zero) from v2,2, v2,3 to v2,m+2, and from v3,2 to vm+2,2.

(2) Calculate the cells of the table

(a) As shown in Fig.3 (a), calculate and set vi, j by using

the equations below. Here, the diagonal cells

absolutely match, while the upper-right and the lower

left elements become same values (symmetric matrix).

Therefore, there is no need to calculate the upper-right

elements.

()

()













+

+

+

=≤≤
−

−

−−

.0

,

,

,,

max2,2
1

1

11

,
gapv

gapv

basv

jiv
ji

ji

jiji

ji

，

，

，

 (1)

()
()

()



≠

=
=

.

,
,

ji

ji

ji bamismatch

bamatch
bas

 (2)

(b) As shown in Fig.3 (b), when the vi,j calculated above is

not 0, set a tracking pointer that refers to the

calculated c(i, j) from the cell used for cell value

calculation (c(i-1, j-1), c(i-1, j), or c(i, j-1)).

(c) Calculate all the cells of the table.

(3) Detect CCs/GCCs

(a) As shown in Fig.3 (c), beginning at the cell where vi, j

is maximized within the table, trace back the cells

until the pointer’s value becomes 0, while recording

the tracing path.

(b) The character strings that are created by connecting

the values of the cell in the 1st row along the recorded

path and connecting the values of the cell in the 1st

column along the recorded path become a pair of GCC.

In the case of Fig.3 (c), similar strings are “10-20-30”

and “10-20-4-30.” (The underlined character becomes

a GAP. The for-loop of Fig.2 (a) is a GCC.) In the

case that the value of vi,j does not decrement even once

when the pointer traces back to the cells, the detected

string is considered to be a CC.

Generally, a program contains plural CCs/GCCs. In (3)

(b), tracing the cells beginning from the cell that satisfies

the following conditions detects all CCs/GCCs.

IJCAT - International Journal of Computing and Technology, Volume 5, Issue 1, January 2018
ISSN (Online) : 2348-6090
www.IJCAT.org

5

0

0

0

0

0

0

0

0

0

0

0

0

0

1

10

20

30

2

3

10

20

4

30

5

1 10 3020 2 3 2010 4 30 5 6

00 00 00 00 00 0

0

0 0

0 0

0 0

0 0

0 1

0

0

0

0

0

･･･

0

6

･･･

･･･

･･･

･･･

･･･

･･･
･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

(a) Calculation of the value of cell

0

0

0

0

0

0

0

0

0

0

0

0

0

1

10

20

30

2

3

10

20

4

30

5

1 10 3020 2 3 2010 4 30 5 6

00 00 00 00 00 0

0

0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 2

0 0

0 0

0 0

0 0

･･･

0

6

･･･

･･･

･･･

･･･

･･･

･･･
･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

(b) Setting pointers for tracking

0

0

0

0

0

0

0

0

0

0

0

0

0

1

10

20

30

2

3

10

20

4

30

5

1 10 3020 2 3 2010 4 30 5 6

00 00 00 00 00 0

0

0 0

0 0 0

0 0 00

0 0 00 0

0 1 00 0 0

0 0 12 0 0 0

0 0 01 0 0 00

0 0 20 0 0 00 0

0 0 10 1 0 00 0 0

0 0 00 0 0 00 0 0 0
･･･

0

6

･･･

･･･

･･･

･･･

･･･

･･･
･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

･･･

(c) Trace back of pointers

Fig. 3 Creation of SWA Table for Detecting CCs/GCCs.

0, >
ji

v (3)

0,,0 ij
vv = (4)

Equation (3) indicates that CCs/GCCs continue until the

relevant cell. Equation (4) indicates that the final lines of

CCs/GCCs match. When CCs/GCCs are detected in the

line unit, these equations add information that those lines

ending with “}” are likely to be a block. The engineer

checks when merging.

3.2.2 Calculate Metrics (STEP2)
This section describes STEP 2 shown in Fig.1. In this

study, metrics that evaluate internal-logic complexity,

independence, and the programming language

dependency are used to improve program readability and

maintainability by merging CCs/GCCs.

(1) LOC (Lines of Code)

LOC is a metric that indicates the number of program

lines. LOC does not include comments or empty code

lines. LOC is used for calculating other metrics.

(2) CYCR (Cyclomatic Complexity Rate)

CYC is a metric that indicates the program’s control flow

complexity. CYC has the number that the total number of

execution paths in the program and 1 are added (the

number of branch instructions, such as if, while, for,

switch, etc. and 1 added). [16] CYCR is the value of CYC

divided by LOC. CCs/GCCs with greater CYCR values

have complicated control flows.

LOC

CYC
CYCR = (5)

(3)COB (Cohesion of Blocks)

COB is a metric that indicates the cohesion of the

program fragment. [17] Cohesion means the degree of

coordination of variables used for a block (a program

fragment surrounded by parentheses, “{” and “}”) in the

program. Where the number of blocks within the program

is b, the number of variables used in the program is v, the

j-th variable used in the program is Vj, and the number of

blocks in the program where variable Vj is used is µ(Vj),

COB is defined as flows. CCs/GCCs with greater CYCR

values become highly independent.

∑=
v

j

jV
vb

COB)(
11

µ
 (6)

(4) RNR (Ratio of Non-Repeated Elements)

RNR is a metric that indicates the proportion of non-

repeated instructions included in the program. A program

contains repeated programming-language-dependent

instructions (routine phrases). [18] These portions are

defined by the programming language specifications, and

difficult to merge. CCs/GCCs with greater RNR values

are likely to describe procedures. Where the LOC of the

IJCAT - International Journal of Computing and Technology, Volume 5, Issue 1, January 2018
ISSN (Online) : 2348-6090
www.IJCAT.org

6

whole CCs/GCCs is LOCwhole and the LOC of repeated

statements is LOCrepeated, RNR is defined as follows.

whole

repeated

LOC

LOC
RNR −= 1

 (7)

3.2.3 Selecting Mergeable CCs/GCCs (STEP3)

This section describes step 3 shown in Fig.1. By using the

metrics obtained, STEP 3 selects CCs/GCCs that can be

merged.

Here, the following section describes how to select

CCs/GCCs, which can be merged, by using the metrics.

First, CCs/GCCs that are independent on the

programming language specifications are extracted by

using RNR. Next, CCs/GCCs are narrowed down by using

CYCR and COB in order to determine CCs/GCCs that

can have benefits of merging. In order to determine the

merging possibilities, we analyzed the existing programs

to determine the thresholds for the metrics. We used three

programs, A, B, and C. Each program has LOC between

1000 and 2500 while having 10 to 15 classes. Program A

calculates a proper temperature in an agricultural plant,

program B calculates the weight applied to the building’s

roof under various natural conditions such as rainfall,

wind, and snow, and program C calculates travel

expenses for a business trip. While calculating the metrics

of CCs/GCCs within each program, two engineers

determined the thresholds for metrics by judging whether

CCs/GCCs could be merged or not. Since each metric’s

domain varied, we normalized each domain to [0, 1] by

using equation (8). Here, xi indicates the relevant metric’s

value, xmax indicates the maximum value of the relevant

metric, and xmin indicates the minimum value of the

relevant metric.

)(

)(
_

minmax

min

xx

xx
valuenormalized i

−

−
=

 (8)

Table 1: Thresholds of CYCR and COB for Merging

Program A B C

Number of CCs/GCCs 6 8 6

Number of mergeable CCs/GCCs 3 5 3

Rate of Merging [%] 50 63 50

Threshold of CYCR 0.48 0.58 0.55

Threshold of COB 0.64 0.55 0.51

public class ClassOrg {

public int var1

public int calc_var1(int x)
{ - - - - - - - - - - - - - - - - - - -

return var1; }

}

public class ClassDerived extends ClassOrg {

public int calc_var1(int x)
{ - - - - - - - - - - - - - - - - - - -

return var1; }

}

class Application {
ClassOrg obj;

public void method1(){

obj = new ClassDerived;

obj.calc_var1(5);

}
public void method2() {

obj = new ClassOrg;

obj.calc_var1(3);

}

} (a) program

(b) Member Access Class (MAG)

(c) Member Override Class (MOG)

int calc_var1(int x)

void method1()

void method2()

ClassOrg

Application

int calc_var1(int x)

ClassDerived

int var1

fieldclass method

ClassOrg obj

void method1()

void method2()

Application
ClassOrg objint calc_var1(int x)

int calc_var1(int x)

ClassDerived

int var1
ClassOrg

Fig.4 Relationship between Program, MAG, and MOG

Table 1 shows the number of CCs/GCCs within each

program and the threshold of each metric that is

determined to be merged. Based on these results, the

threshold for RNR of CCs/GCCs that can be merged is set

to 0.50, 0.58 for CYCR, and 0.64 for COB. CCs/GCCs

that satisfy those conditions are the program fragments

that are the portions describing specific procedures that

are independent of programming language specification,

the portions having similar program control structures,

and the portions being highly independent of other

IJCAT - International Journal of Computing and Technology, Volume 5, Issue 1, January 2018
ISSN (Online) : 2348-6090
www.IJCAT.org

7

portions. Merging these CCs/GCCs could improve

program readability and maintainability.

3.2.4 Determine Merging Type and Procedure for

 CCs/GCCs (STEP3)

This section describes STEP 4 shown in Fig.1. STEP 4

calculates the metrics related to the program structures of

CCs/GCCs and determines the merging type and

procedure. Table 2 lists merging type, judgment criteria

(metrics that are used for determination), and specific

merging procedures. We selected those methods suitable

to merge CCs/GCCs that are proposed as the refactoring

formats by Fowler. The proposed method determines the

merging method based on information about the starting

lines of CC and GCC, the ending lines of CC and GCC,

the starting line of the gap, the ending line of the gap,

classes to which CCs/GCCs belong, super classes,

subclasses, attributes that are referred to (in classes and

other classes), and methods used (in classes and other

classes). The proposed method determines whether the

merging is conducted or not, based on the number of

attributes that are referred to and the number of methods

used. In this study, merging is implemented when these

numbers are 1 or smaller. CCs/GCCs can be merged even

when these values are 2 or greater. However, this situation

makes merging more complicated, while the program

readability is not improved to any great extent. Therefore,

CCs/GCCs are not merged in this case. Information about

the starting lines, the ending lines, the starting line of the

gap, and the ending line of the gap are obtained by using

the CC/GCC detection method described in section 3.2.1.

Other information is obtained by developing a Member

Access Graph (MAG) and a Member Override Graph

(MOG). [19] The MAG is a graph that expresses the

relationship between the method call and attribute

reference. The MAG expresses the method call relation in

directed segments from the caller to the call target while

expressing the attribute reference relation in direct

segments from the referrer to the reference target. The

MOG is a graph that expresses the overriding relationship

wi t h t h e i n h e r i t a n c e of t h e m et h od a n d t h e

implementation of the abstract method. The MOG

expresses method overriding and implementing in the

directed segment from the method that overrides and the

method to be overridden. Fig.4 shows the relationship

between the program, MAG, and MOG. The program of

Table 2: List of Merging Type, Judgment Criteria, and Merging Procedure

Merging Type Judgment Criteria

 (all the condition are satisfied)

Merging Procedure

Extract Method � CCs/GCCs belong to the same class. � Creates a new method in the class for merging.

Pull Up Method � CCs/GCCs belong to the same class.

� CCs/GCCs belong to the same super class.

� CCs/GCCs exist in different subclasses.

� Creates a new method in the super class for merging.

Extract Class � CCs/GCCs belong to the same class.

� Plural variety of CCs/GCCs exists.

� Creates a new class.

� Creates a new method in the class.

� Merges CCs/GCCs in the method.

Extract Super Class � CCs/GCCs belong to different super classes.

� Plural variety of CCs/GCCs exists in the

class.

� Creates a new super class.

� Changes the original class into a subclass.

� Creates a new method in the super class.

� Merges CCs/GCCs in the method.

Parameterized Method � CCs/GCCs belong to the same class.

� Different constants are used for CCs/GCCs.

� Creates a new method.

� Set the constants as the arguments for the method.

Pull Up Filed � CCs/GCCs belong to the same super class.

� CCs/GCCs exist in different subclasses.

� CCs/GCCs have the same attribute

� Transfers the attribute to the super class.

Create Template Method � Extract Method or Pull Up Method is

established

� There is a GCC (gaps are included)

� Input data and output data necessary for

calculating the gap are different.

� The gap calculation result is used for the

subsequent portion of the GCC’s gap.

� Moves the GCC's common parts to the super class.

� Creates abstract methods that have same signatures of

gap parts of GCC in the super class.

� Implements the abstract method in the subclass.

IJCAT - International Journal of Computing and Technology, Volume 5, Issue 1, January 2018
ISSN (Online) : 2348-6090
www.IJCAT.org

8

Fig.4 (a) has the following classes, ClassOrg,

ClassDerived, and Application. ClassOrg has the

calc_var1(int x) method, ClassDerived has the

calc_var1(int x) method, and Application has two

methods, such as method1() and method2(). In this

program, method1() in the Application class calls

calc_var1(int x) in the ClassDerived, and method2() calls

calc_var1(int x) in the ClassOrg class. Fig.4 (b) shows the

MAG that links the relationship between these method

calls with directed segments. Additionally, calc_var1(int

x) in the ClassDerived class overrides calc_var1(int x) in

the ClassOrg class. Fig.4 (c) shows the MOG that links

the overriding relationships with directed segments.

3.2.5 Merge CCs/GCCs (STEP5)

This section describes STEP 5 shown in Fig.1. Applying

the specific procedure for the merging type determined by

STEP 4 (see Table 2), STEP 5 merges CCs/GCCs. This

step is conducted manually.

3.3 Support Tools for the Proposed Method

To evaluate the proposed method, we developed the

CC/GCC detection tool, the metrics calculation tool, and

the merging procedure proposal tool. The CC/GCC

detection tool outputs information according to each

CC/GCC, such as the name of the file, the starting and

ending code line numbers, the starting and ending code

line numbers of the gap. The metrics calculation tool

outputs the following information according to each

CC/GCC, LOC, CYC, COB, RNR, MAG, and MOG. [20]

The merging proposal tool show merging procedure

visually.

4. Evaluation of the Proposed Method

This chapter evaluates the utility of the proposed method

and the prototype tools while applying them to programs

that are actually in use. Five kinds of programs, from A

through E, are inputted into the prototype tools, and

CCs/GCCs in them are merged. Here, CCs or GCCs

having 20 lines or more were detected, while the

following parameters were given to the SWA: match = 2,

mismatch = -3, and gap = -2. The programs A through E

used for this evaluation were developed by individual

programmers having four to six years of programming

experience and equivalent skills. Program A checks the

overridden relation between methods and the reference

relation between attributes. Program B analyzes and

traces the cause of particular malfunctions of a control

program (Fault Tree Analysis). Program C supports

exhaustive consideration of possible failures of a control

program (Failure Mode and Effects Analysis). Program D

extracts all the code lines that are necessary for

c a l c u l a t i n g t h e v a l u e s o f p a r t i c u l a r

Table 3: Application Results of the Proposed Method

A B C D E F Average
LOC before Change 3135 4271 2408 1582 5927 18026 35349
LOC after Change 2724 3387 1972 1374 5307 17545 32309
Detected CC 30 51 19 14 42 32 188
Detected GCC 4 3 2 3 4 3 19
Candidates for Integrated CC 14 23 11 6 17 20 91
Candidates for Integrated GCC 3 3 2 2 4 3 17
Integrated CC 13 23 11 6 15 19 87
Integrated GCC 3 2 2 1 3 2 13
Reduced LOC (Total) 411 884 436 208 620 481 3040
 Reduced LOC (CC) 364 806 403 180 533 407 2693
 Reduced LOC (GCC) 47 78 33 28 87 74 347
Average Size (Total) 26 35 34 30 34 23 30
 Average Size (CC) 28 35 37 30 36 21 31
 Average Size (GCC) 16 39 17 28 29 37 27
Integrated / Candidates(total)[%] 94 96 100 88 86 91 93
 Integrated Rate (CC) [%] 93 100 100 100 88 95 96
 Integrated Rate (GCC) [%] 100 67 100 50 75 67 76
Reduced Rate (Total) [%] 13 21 18 13 10 3 9
 Reduced Rate (CC) [%] 12 19 17 11 9 2 8
 Reduced Rate (GCC)[%} 1 2 1 2 1 0 1

IJCAT - International Journal of Computing and Technology, Volume 5, Issue 1, January 2018
ISSN (Online) : 2348-6090
www.IJCAT.org

9

Table 4: Application Results of Applied Merging Types

CC GCC CC GCC CC GCC CC GCC CC GCC

1 0 1 0 1 1 0 0 1 0

0 0 1 0 0 0 0 0 0 0

11 3 19 1 9 0 6 2 14 0

1 0 2 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2

10 3 19 1 9 1 6 2 15 0

- 0 - 1 - 1 - 0 - 1
0Create Template

Method
0 1 0 0

D (Total) E (Total)

0

13

A (Total) B (Total) C (Total)

0

1

0

14

1

1 2 0 1

20

2

0

0

14

1

20

20

0

9

1

0

10

1

8 15
Parameterize Method

Pull Up Method

Pull Up Field

Extract Method

Extract Class

Extract Super Class

8

0

variables within a program (program slicing). Program E

is the present prototype tools described in the previous

section, 3.3.

Table 3 shows the CC/GCC merging results of each

program. The meaning of each line of Table 3 is as

follows: “LOC before/after Change” indicates the

program’s LOC before/after merging, “Detected {CC,

GCC}” indicates the number of detected {CCs, GCCs}

within the program, “Candidates for Integrated {CC,

GCC}” indicates the number of {CCs, GCCs} that were

determined to be merged by the proposed method,

“Integrated {CC, GCC}” indicates the number of {CCs,

GCCs} that were actually merged, “Reduced LOC {Total,

CC, GCC}” indicates the LOC of {total CCs and GCCs,

only CCs, only GCCs} that were reduced by merging,

“Average Size {Total, CC, GCC}” indicates the average

LOC of {total CCs and GCCs, only CCs, only GCCs},

“Integrated/Candidates {Total, CC, GCC}” indicates the

percentage of the number of {total CCs and GCCs, only

CCs, only GCCs} merged actually and the number of

{total CCs and GCCs, only CCs, only GCCs} selected by

the proposed method for merging, and “Reduced Rate

{Total, CC, GCC} indicates the percentage of LOC of

{total CCs and GCCs, only CCs, only GCCs} that were

reduced by merging. Since each program had a different

scale, it did not make sense to directly compare LOC and

the number of CCs/GCCs. On the other hand, the

Average Size was 32 LOC, which was almost the same

value of all the programs. This was because the threshold

for CCs/GCCs detection was 20 LOC or greater, and the

scale level for a programmer to easily understand and

develop the program function by copying and pasting

code is about 30 LOC. Integrated/Candidate (CC) reached

96%. This confirmed that the CCs selected by the

proposed method could be almost merged. However,

Integrated/Candidate (GCC) was 79%, which was lower

than CC. This was because some GCCs including several

gaps were not merged. Therefore, Integrated/Candidate

(Total) was 93%. Reduced Rate was 10%. Because the

number of CCs/GCCs varied depending on the

completion rate of each program, this rate varied

significantly.

Table 4 shows the merging types applied to CCs/GCCs.

The proposed method might apply plural merging types

simultaneously. Therefore, the number of CCs/GCCs did

not match the number of merging types.

The breakdown for the merging type for CCs of program

A is as follows: The Pull Up Method was applied to 1 CC,

the Extract Method was applied to 1 CC, the Extract

Method and the Parameterized Method were

simultaneously applied to 10 CCs, and the Extract Class

was applied to 1 CC. As for GCC merging types, the

Extract Method and the Parameterized Method were

simultaneously applied to three GCCs. Those merged

GCCs had simply one gap, and the gap was independent

of other portions of GCCs. Therefore, the gap was moved

to the back of the GCC. Two programmers confirmed that

the applied merging types and procedures were adequate.

The breakdown for the merging type for CCs of program

B is as follows: The Pull Up Method was applied to 1 CC,

the Pull Up Field was applied to 1 CC, the Extract

Method and the Parameterized Method were

IJCAT - International Journal of Computing and Technology, Volume 5, Issue 1, January 2018
ISSN (Online) : 2348-6090
www.IJCAT.org

10

simultaneously applied to 19 CCs, and the Extract Class

was applied to 2 CCs. As for the breakdown of GCC

merging types, the Extract Method and the Parameterized

Method were simultaneously applied to 1 GCC, and the

Create Template Method was applied to 1 GCC. The

former merging was done because of the same reason as

program A. The latter merging was done because there

was only one gap. However, other GCCs that were not

merged had plural gaps. Two programmers confirmed

that applied merging types and procedures were adequate.

The breakdown for the merging type for CCs of program

C is as follows: The Pull Up Method was applied to 1 CC,

the Extract Method and the Parameterized Method were

simultaneously applied to 9 CCs, and the Extract Class

was applied to 1 CC. As for the breakdown of GCC

merging types, the Pull Up Method and the Parameterized

Method were simultaneously applied to 1 GCC, and the

create Template Method was applied to 1 GCC. These

GCCs were merged because of the same reasons as

program B. Two programmers confirmed that applied

merging types and procedures were adequate.

As for CC merging types for program D, the Extract

Method and the Parameterized Method were

simultaneously applied to 6 CCs. As for GCC merging

types, the Extract Method and the Parameterized Method

were simultaneously applied to 2 GCCs. These GCCs

were merged because of the same reasons as program B.

Two programmers confirmed that applied merging types

and procedures were adequate.

The breakdown for the merging types for CCs of program

E is as follows: The Pull Up Method and the

Parameterized Method were simultaneously applied to 1

CC, and the Extract Method and the Parameterized

Method were simultaneously applied to 14 CCs. As for

GCC merging types, the Extract Super Class were applied

to 2 GCCs, and the Create Template Method was applied

to 1 GCC. As for the former GCCs, the gap portion was

independent of the common portion. Therefore, the

common portion was set as the Super Class, while the gap

portion remained in the Child Class. The latter merging

was done because there was only one gap. However, other

GCCs that were not merged had plural gaps. Two

programmers confirmed that applied merging types and

procedures were adequate.

These application experiments confirmed that the Extract

Method and the Parameterized Method were frequently

applied to merge CCs/GCCs. This was because

CCs/GCCs are frequently developed by copying and

pasting, as well as modifying, adding, and/or deleting

small-scale program fragments that are coherent as a

function.

5. Summary and Future Works

Through this paper, we proposed a method for selecting

CCs/GCCs for merging by calculating CYCR, COB, and

RNR of CCs/GCCs detected by using the SWA.

Furthermore, the proposed method also determines a

proper merging type from the metrics related to the

program structures of those selected CCs/GCCs. We

applied the proposed method to the existing programs and

confirmed that the proposed method can adequately

merge 96% of CCs that were determined to be merged.

We also confirmed that the proposed method can properly

merge 79% of GCCs that were determined to be merged.

The proposed method made it possible to merge

CCs/GCCs more efficiently than merging based on

exhaustive analysis of all CCs/GCCs. The low percentage

of merging GCCs was due to plural gaps existing in

GCCs. These GCCs were not merged in this study. This

was because we determined that merging such GCCs

would be less effective in improving readability and

maintainability in comparison with the increasing cost of

merging work. The above-mentioned results confirmed

that use of the proposed method enabled efficient merging

of CCs/GCCs.

The future issues include the introduction of new metrics

so as to improve the rate of judging CCs/GCCs that can

be merged. Moreover, while preparing more merging

types, we will improve program readability and

maintainability.

References

[1] Y. Higo, S. Kusmoto and K. Inouse, "A Survey of Code

Clone Detection and its Related Techniques", IEICE

Transaction on Information and Systems D, Vol. 91-D,

No. 6, 2008, pp. 1465-1481.

[2] K. M. Bergman, L. L. Lau and D. Notkin, "An

Ethnographic Study of Copy and Paste Programming

Practices in OOPL, Proceedings 2004 International

Symposium on Empirical Software Engineering, 2004,

pp. 83-92.

[3] L. Bergroth, H. Hakonen and T. Raita, "A Survey of

Longest Common Subsequence Algorithms",

Proceedings 7th International Symposium on String

Processing and Information Retrieval, 2000, pp.39-48.

[4] C. K. Roy and J. R. Cordy, "NiCad: Accurate Detection

of Near-miss Intentional Clones Using Flexible Pretty-

IJCAT - International Journal of Computing and Technology, Volume 5, Issue 1, January 2018
ISSN (Online) : 2348-6090
www.IJCAT.org

11

printing and Code Normalization", Proceedings 16th

International Conference on Program Comprehension,

2008, pp. 172-181.

[5] L. Jiang, G. Misherghi, Z. Su and S. Glondu,

"DECKARD: Scalable and Accurate Tree-Based

Detection of Code Clones", Proceedings the 29th

International Conference on Software Engineering,

2007, pp. 96-105.

[6] J. Krinke, "Identifying Similar Code with Program

Dependence Graphs", Proceedings the 8th Working

Conference on Reverse Engineering, 2001, pp. 301-309.

[7] S. Temple and W. Michael, "Identification of Common

Molecular Subsequences", Journal of Molecular

Biology, Vol. 147, 1981, pp. 195–197.

[8] H. Murakami, K. Hotta, Y. Higo, H. Igaki and S.

Kusumoto, "Gapped Code Clone Detection with

Lightweight Source Code Analysis", Proceedings ICPC

2013, 2013, pp. 93-102.

[9] H. Murakami, K. Hotta, Y. Higo, H. Igaki and S.

Kusumoto, "Gapped Code Clone Detection Using the

Smith-Waterman Algorithm" , IPSJ Journal, Vol. 55,

No. 2, 2014, pp. 981-993 .

[10] Y. Higo and S. Kusumoto, "How Often Do Unintended

Inconsistencies Happen? - Deriving Modification

Patterns and Detecting Overlooked Code Fragments-",

Proceedings 28th IEEE International Conference of

Software Maintenance, 2012, pp.222-231.

[11] N. Gode and R. Koschke, "Frequency and Risks of

Changes to Clones", Proceedings ICSE'11, no page

number, 2011, 10pages.

[12] N. Fenton and J. Bieman, "Software Metrics -A

Rigorous and Practical Approach - Third Edition", CRC

press, 2014.

[13] K. Hatano, Y. Nomura, H. Taniguti and K. Ushijima,

"A Mechanism to Support Automated Refactoring

Process Using Software Metrics", IPSJ Journal, Vol.44,

No.6, 2003, pp.1548-1557

[14] M. Fowler, K. Beck, J. Brant, W. Opdyke and D.

Roberts, "Refactoring: Improving the Design of Existing

Code", Addison-Wesley, 1999.

[15] Y. Higo, T. Kamiya, S. Kusumoto and K. Inoue,

"Refactoring Support Environment Based on Code

Clone Analysis", IEICE Transactions D, Vol. J88-DI,

No.2, 2005, pp.186-195.

[16] T. McCabe, "Complexity Measure", IEEE Transactions

on Software Engineering, Vol.2, No 4, 1976, pp 308-

320.

[17] M. Ioka, N. Yosida, T. Masai and K. Inoue, "Ranking

Candidates for Applying Template Method Pattern with

a Cohesion Metric COB", Technical Report of IEICE

KBSE, vol.111,No.169, 2011, pp.57-62．

[18] Y. Higo, T. Kamiya, S. Kusumoto and K. Inoue,

"Method and implementation for investigating code

clones in a software system", Information and Software

Technology, Vol.49, Issues 9-10, 2007, pp.985-998.

[19] R. Yokomori, K. Kondou, F. Ohata and K. Inoue,

"Impact Analysis System for Changes on Object-

Oriented Programs", IEICE Transactions D, Vol. J86–

D–I,No.3, 2003, pp.150–158.

[20] M. Takahashi, R. Nanba, Y. Anang and Y. Watanabe,

"An Improvement Method for Program Structure Using

Code Clone Detection, Impact Analysis, and

Refactoring Formats", SICE Journal of Control,

Measurement, and System Integration, Vol.10, No.3,

2017, pp. 184-191.

Masakazu Takahashi received B.S. degree in 1988 from Rikkyo
University, Japan, and M.S. degree in 1998, Ph.D. degree in 2001,
both in Systems Management from University of Tsukuba, Japan. He
was with Ishikawajima-Harima Heavy Industries Co., Ltd. from 1988
to 2004. He was with Shimane University from 2005 to 2008 and
with University of Yamanashi since 2008. He is a professor in
University of Yamanashi since 2014. His research interests include
software engineering and safety.

Yunarso Anang received B.E. and M.E. degree in software
engineering from University of Yamanashi in 1995 and 1997
respectively, and received Ph.D in engineering also from University of
Yamanashi in 2017. He was with SYNC Information System, Inc.,
Japan from 2000 to 2007 as a senior engineer. He is a lecturer in
Institute of Statistics, Indonesia, since 2008. His research interests
include software engineering and quality.

Reiji Nanba received B.E. degree in 1999 from Daiichi Institute of
Technology, Japan, and ME degree in 2003 and Ph.D. degree in
2008 from Shimane University, Japan. He was an Assistant
Professor in Daiichi Institute of Technology in 2008. He is an
associate professor till now in Daiichi Institute of Technology in 2011.
His research field is mainly in Civil and Environmental Engineering
and Engineering Education.

Yoshimichi Watanabe received the B.S. and M.S. degrees in
computer science from University of Yamanashi, Japan in 1986 and
1988 respectively and received D.S. degree in computer science
from Tokyo Institute of Technology, Japan in 1995. He is presently an
associate professor of the Department of Computer Science and
Engineering at University of Yamanashi. His research interests
include software development environment and software quality.

