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Abstract

Motivation: Genome and transcriptome analyses can be used to explore cancers comprehensively,

and it is increasingly common to have multiple omics data measured from each individual.

Furthermore, there are rich functional data such as predicted impact of mutations on protein

coding and gene/protein networks. However, integration of the complex information across the dif-

ferent omics and functional data is still challenging. Clinical validation, particularly based on patient

outcomes such as survival, is important for assessing the relevance of the integrated information

and for comparing different procedures.

Results: An analysis pipeline is built for integrating genomic and transcriptomic alterations from

whole-exome and RNA sequence data and functional data from protein function prediction and

gene interaction networks. The method accumulates evidence for the functional implications of

mutated potential driver genes found within and across patients. A driver-gene score (DGscore) is

developed to capture the cumulative effect of such genes. To contribute to the score, a gene has to

be frequently mutated, with high or moderate mutational impact at protein level, exhibiting an

extreme expression and functionally linked to many differentially expressed neighbors in the func-

tional gene network. The pipeline is applied to 60 matched tumor and normal samples of the same

patient from The Cancer Genome Atlas breast-cancer project. In clinical validation, patients with

high DGscores have worse survival than those with low scores (P¼ 0.001). Furthermore, the

DGscore outperforms the established expression-based signatures MammaPrint and PAM50 in

predicting patient survival. In conclusion, integration of mutation, expression and functional data

allows identification of clinically relevant potential driver genes in cancer.

Availability and implementation: The documented pipeline including annotated sample scripts

can be found in http://fafner.meb.ki.se/biostatwiki/driver-genes/.

Contact: yudi.pawitan@ki.se

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Analysis of genome and transcriptome sequencing experiments pro-

vides a comprehensive tool for molecular studies of cancers. The

Cancer Genome Atlas (TCGA) breast cancer project (Cancer

Genome Atlas Network, 2012) presents a rich dataset of whole-

exome and RNA sequence data of matched tumor and normal sam-

ples of the same patient; these allow us to accurately infer tumor-

specific alterations including somatic mutations and isoform-level

differential expression. However, it is still a challenge how to subse-

quently integrate the complex information across the different omics

data, while also exploiting the rich functional data such as protein

prediction and gene/protein interaction networks.

Most carcinomas are driven to develop by a few genetic alter-

ations, whereas the majority of the remaining genetic changes have

neutral or less deleterious effect in cancer development (Futreal

et al., 2004). To date, potential driver genes are identified largely

based on finding recurrent copy-number alteration or mutations in a

specific region across multiple samples (Akavia et al., 2010; Ciriello

et al., 2012; Lazar et al., 2013) but not on patient-specific genomic

alterations. In this article, we develop a full analysis pipeline to com-

bine DNA and RNA sequencing data together with functional data,

starting from the preprocessing of raw aligned sequencing reads, to

search for potential driver genes and eventually to summarize the

effects of these genes into a single driver-gene score (DGscore). In

addition to using existing bioinformatics tools, including GATK

(McKenna et al., 2010), SnpEff (Cingolani et al., 2012) and Sequgio

(Suo et al., 2014), we suggest a novel method based on the network

enrichment analysis (NEA; Alexeyenko et al., 2012) to integrate the

genomic and transcriptomic profiles.

There is a growing literature on searching for driver genes based

on data integration. We can state at least two novel aspects in this

study: (i) isoform-level analysis: because exon lengths are not mul-

tiples of three, the potential protein-coding impact of one mutation

is different for different isoforms. Hence isoform-level assessment is

necessary. (ii) Clinical validation: we assess the clinical relevance of

the potential drivers in terms of correlation with patient outcomes

such as survival. Most current integrative methods in identifying

cancer driver genes are based on whole genes and are primarily

validated based on previously reported drivers and pathway ana-

lysis, but not clinically. Akavia et al. (2010) identified some known

drivers of melanoma, and two of the predicted drivers were demon-

strated to be critical for tumor growth with knockdown experi-

ments. Youn and Simon (2011) proposed a method that accounts

for the functional impact of mutations on protein coding, a sample

variation in background mutation rate and the redundancy of the

genetic code. They analyzed a dataset of non-small cell lung tumors

to show that the identified driver genes were also deemed important

previously.

Ciriello et al. (2012) developed the so-called MEMo algorithm

and showed that it was able to recapitulate previously identified

pathways in glioblastoma and ovarian cancer. Potential driver genes

were used for histological subtyping in lung cancer (Lazar et al.,

2013) or to reveal intrinsic subtype-specific mutations in breast can-

cer (Cancer Genome Atlas Network, 2012). CAERUS focuses on in-

vestigation of biological network disruptions linked to cancer

outcomes at the protein domain level, but it does not take into ac-

count the impact of mutations on RNA expression and protein cod-

ing (Zhang and Ouellette, 2011). DawnRank, a recently published

algorithm, directly prioritizes altered genes on a single-patient scope

regardless of mutation frequency (Hou and Ma, 2014). DawnRank

requires information of a gene interaction network, somatic

genomic alterations and the differential gene expression profile, but

it does not consider the predicted biological impact of a mutation on

protein. Helios incorporates somatic copy number alterations, point

mutations, gene expression and RNAi screens to pinpoint driver

genes with large recurrently amplified regions of DNA (Sanchez-

Garcia et al., 2014). In summary, these methods do not utilize iso-

form-level information and the potential drivers are generally not

validated in terms of patients’ clinical outcomes such as survival.

As genetic instability caused by mutations in multiple critical

genes may be central to tumor progression (Loeb and Loeb, 2000;

Salomon et al., 2013), we summarize the effects of potential driver

genes into a single value DGscore and assess its clinical value as

prognostic biomarker. In our analysis of the TCGA breast cancer

data, there is a strong evidence that patients carrying more mutated

genes with functional implications and extreme expression pattern

have worse survival rates than those with less mutated potential

driver genes. Over the last decade, a number of studies have de-

veloped gene signatures for prognostic classification of breast can-

cer. Among the most well known, Mammaprint (van ’t Veer et al.,

2002) captures the expression profile of 70-gene associated with

prognosis and has been shown to be a better predictor for distant

metastasis than the clinical parameters. The so-called PAM50 signa-

ture (Parker et al., 2009) classifies breast cancer into intrinsic mo-

lecular subtypes and has been shown to add significant prognostic

value. For the TCGA breast cancer data, as predictor of patient sur-

vival, the DGscore based on the potential driver genes outperforms

the 70-gene MammaPrint and the 50-gene PAM50 signatures. In

summary, integration of omics and functional data have the poten-

tial to produce clinically valuable information.

2 Patients and methods

2.1 TCGA60 paired samples
From the TCGA breast cancer project, we identified a total of 60 fe-

male patients diagnosed with invasive breast carcinoma, for which

both DNA and RNA sequencing data were available, and both adja-

cent normal breast tissue and blood samples were also collected.

The age of patients at initial pathological diagnosis ranged from 31

to 90 years, with a median of 58. A majority of the patients (77%)

had infiltrating ductal carcinoma. Seven patients were stage I, 36

stage II, 14 stage III, 1 stage IV and 2 patients’ stage information

was not available. Thirty-seven patients had estrogen-receptor posi-

tive tumors. After a median follow-up of 25 months, with a range

from 0 to 147 months, 18 patients had died. Other clinical variables

and information on generating the sequencing data are summarized

in the Supplementary Material (section Patients and tissue samples,

Sequencing data processing and Supplementary Table S1). The

TCGA samples IDs that used in the analysis are provided in

Supplementary Table S2 in the Supplementary Material.

2.2 Integrative statistical analysis
An overview of the scheme to identify putative cancer drivers,

including procedures on data processing, analysis and integration, is

shown in Figure 1.

First, we use the Genome Analysis Toolkit (McKenna et al.,

2010) and PICARD (http://picard.sourceforge.net/) for refining ini-

tial reads, followed by a v2 test to assess the statistical significance

of association between allelic counts and tumor/normal (T/N) status

for somatic variant calling. To increase statistical confidence, a vari-

ant must have P-value<0.01 to be considered further, and up to

1000 variants are allowed for each patient. This is likely to be more
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mutations than expected in a tumor, but at this point, we need to

preserve sensitivity, so specificity is deliberately compromised, since

it will be improved in the subsequent filtering steps.

Non-synonymous mutation is considered more likely to have a

direct role in phenotypic change, so the SnpEff is then used to pre-

dict the impact of these mutations on protein coding as ‘high’, ‘mod-

erate’ or ‘low’, based on the functional consequences of the

mutation on known genes (Cingolani et al., 2012). A high impact

mutation, for instance, leads to exon deletion, frame shift and stop

lost. Moderate impact includes non-synonymous coding, codon in-

sertion or deletion, etc. Synonymous start/stop, synonymous coding,

etc, are categorized as low impact. Isoforms mutated in at least 10

patients and predicted to have high or moderate impact in more

than two patients are kept on the list of potential drivers genes. (See

the Supplementary Material, section Selection of frequently mutated

isoforms for details.) Although extremely rare mutations may be

neglected by considering recurrently mutated genes, setting a cutoff

to filter out low frequency mutations may reduce false positive

mutation calls and highlight primary genes in tumor development.

Gene- and isoform-level expression is estimated using Sequgio

(Suo et al., 2014). A median and variance scaling is then performed

to normalize the expression on the scale of log2 T/N ratio.

While most of our analysis is at isoform level, we often still have

to refer to genes. In general, if at least one isoform of a potential

driver gene meets the necessary requirement, the gene is included in

the next step of the pipeline.

The integration of mutation and expression data is done using a

network enrichment analysis (NEA) as follows. The key idea is that

the functional impact of each mutation is assessed in terms of the

number of differentially expressed (DE) neighbors in a gene net-

work. We use a comprehensive network (Alexeyenko et al., 2012)

containing approximately 1.4 millions functional interactions be-

tween 16 288 HUPO genes/proteins. To be consistent with the ter-

minology used by Alexeyenko et al. (2012), each mutated gene is

referred to as a functional gene set (FGS, Fig. 1). While such a set

usually contains multiple genes, in our application each mutated

gene is assessed independently for its central functional role in mod-

ulating the expression of its interacting neighbors in the network.

Also following the NEA terminology, a collection of DE genes based

on the expression data is called the altered gene set (AGS). We com-

pute a quantitative enrichment score (z-score) as

z ¼ dAF � lAF

rAF
;

where dAF is the number of network links between genes in the AGS

and the FGS, and lAF and rAF are the expected mean and standard

deviation of dAF. These parameters are computed using a random-

ized network under the null hypothesis of no enrichment

(Alexeyenko et al., 2012). See also Figure 2 for an illustration of

AGS links to some mutated genes. The z-score measures the over-

representations of direct links between the AGS and the FGS, hence

the transcriptomic impact of the mutation. This in turn allows us to

prioritize the mutated genes. We only consider genes with positive z-

value >2 as potential driver genes.

Because the underlying gene/protein interaction networks are

available only at gene level, the NEA must be done at gene level. In

setting up the AGS and FGS, we simply use the gene associated with

the isoform. If there are multiple isoforms involved, the correspond-

ing gene is set only once in the AGS or FGS.

Let us take BRCA1 as an illustration of how the integrative algo-

rithm works up to this point. BRCA1 has six isoforms, all of which

contain at least one point mutation with a mutation frequency of

30% across the patients. Three of the isoforms, NM_007294,

NM_007297 and NM_007300, are predicted to have a moderate

functional impact on the protein coding, thus kept in the subsequent

analysis. Hence, BRCA1 gene is considered as an FGS in the NEA.

Fig. 1. Flowchart of the identification of potential driver genes and derivation

of the DGscore; see text for detailed description

Fig. 2. Gene network around four potential driver genes FANCA, BRCA1,

MKI67 and HEATR1 (black stars). This network contains 30 other genes (cir-

cles) connected to the potential driver genes. There is a total of 159 links,

including protein–protein interactions, metabolic and signaling links from the

functional coupling network (Alexeyenko and Sonnhammer, 2009)
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Depending on the way we define the AGS, NEA can be used to

identify mutated potential driver genes that are either common

driver genes or patient-specific driver genes. For the common driv-

ers, the AGS is derived from the top 100 genes for which at least one

of their isoforms exhibit the greatest DE among all isoforms in terms

of isoform-level expression between all tumors versus the paired

normal. As stated earlier, each gene appears only once in the AGS;

for example, two isoforms of the NUF2 gene, NM_145697 and

NM_031423, are ranked as the 34th and 36th top DE isoforms, re-

spectively, so NUF2 is set once in the AGS. For the patient-specific

drivers, the AGS contains the top 100 genes for which at least one of

their isoforms exhibit the largest fold change, computed as tumor/

normal expression ratio in a specific patient.

While NEA measures how important a potential driver is in the

gene network, extreme expression may be another indicator for the

mutated potential driver to have a dramatic functional impact in

activating or silencing expression of the neighbor genes. So to

serve successfully as a putative driver, over- or under-expression,

ranked over the top 90th percentile of the absolute log2 T/N expres-

sion distribution for which at least one of their isoforms is also

required.

Although a single mutation may not be associated with poor can-

cer survival (Goodwin et al., 2012), genomic instability accumulated

from a number of cancer-related mutations may result in a worse

prognosis (Salomon et al., 2013). So we compute the total number

of drivers weighted by their corresponding NEA z-scores as a meas-

ure of mutation load, so a driver with a higher z-score would be

assigned a larger weight. We term the weighted sum a ‘driver-gene

score’ (DGscore).

A more detailed description of the integrative algorithm can be

found in the Supplementary Material (section Integrative algorithm).

We provide a website http://fafner.meb.ki.se/biostatwiki/driver-

genes/ with examples of scripts to use the various tools in the

pipeline.

2.3 Clinical validation and comparisons
We use the DGscore derived from the integrative analysis to assess

the prognosis of the 60 TCGA patients, where we shall compare pa-

tients with DGscore larger than the median versus those lower than

the median. We note that the DGscore has been computed independ-

ently from the survival information, so this survival analysis is un-

biased. Two well-known prognostic signatures are compared: (i)

the 70-gene MammaPrint (van ’t Veer et al., 2002) and (ii) the 50-

gene PAM50 classifier (Parker et al., 2009). These are described

later. Survival times are visualized with Kaplan-Meier plots and the

P-value for the difference between the survival curves is calculated

by the log-rank test.

The expression profiles and clinical datasets for 117 breast can-

cer patients in the study conducted by van ’t Veer et al. (2002) can

be obtained from the R package mammaPrintData at http://astor.

som.jhmi.edu/�marchion/breastTSP.html. Forty-four patients re-

mained disease-free of at least 5 years after their initial diagnosis.

The intensity values on log scale are standardized such that every

patient has a mean intensity value of zero and a standard deviation

of one. Out of the 70 prognostic markers in MammaPrint, 47 are

present in the TCGA expression data; the rest appear to be ex-

pressed sequence tags (ESTs) that are not mapped in standard data-

bases. The risk score is computed based on the correlation of the 47

genes from each TCGA patient to the average expression profile of

the good-prognosis patients in the original van ’t Veer et al. study

(2002). The 60 patients in TCGA study are then split into two prog-

nostic groups using median correlation coefficient as a cutoff.

The 50 genes in PAM50 are used for classification of breast can-

cer into five intrinsic molecular subtypes: basal-like, HER2-

enriched, luminal A (LumA), luminal B (LumB) and normal-like.

Two versions of risk of relapse (ROR) scores are proposed by

Parker et al. (2009): (i) ROR-S uses the intrinsic subtypes predicted

by the 50-gene PAM50 classifier and (ii) ROR-C combines the pre-

dicted subtypes and tumor size. These are

ROR-S¼0.05basalþ0.12HER2�0.34LumAþ0.23LumB
ROR-C¼0.05basalþ0.11HER2�0.23LumAþ0.09LumBþ0.17
Size.

The centroids predicted by the 50-gene classifier are obtained from

R package genefu (Haibe-Kains et al., 2012). Correlation between

the expression profile of the 50 genes and centroids is calculated for

each TCGA60 paired samples. Using the correlation for the sub-

types, ROR score is computed for each patient according to the co-

efficients listed earlier. Threshold is determined from the median of

the ROR score to split the patients into two groups, for which sur-

vival time is compared.

3 Results

3.1 TCGA60 paired samples
Among the TCGA60 paired samples, we identify 16 recurrent

mutated isoforms with high impact and 245 with moderate impact.

Among these frequently mutated variants, the NEA analysis finds 17

common potential driver genes, namely, CHD1L, ADCY10,

HEATR1, MUC4, DSPP, PKHD1, LPA, COL14A1, MKI67,

OVCH1, RNF17, DNAH3, CDH11, CRISPLD2, FANCA, BRCA1

and LAMA1. Figure 2 illustrates the gene network involving

FANCA, BRCA1, MKI67 and HEATR1 genes. By construction in

the algorithm, these genes are enriched in their links to genes that

are differently expressed between tumors and normals.

To identify the patient-specific drivers that may be neglected in

the common-driver genes, we perform the NEA within each patient,

where the altered gene-set is defined as the top 100 isoforms having

the largest fold-change in expression between tumor and normal. In

total, we found 27 patient-specific drivers, but 15 of them are al-

ready among the common drivers; the other 12 are TP53, NOMO1,

AIFM1, BCLAF1, HMCN1, NBPF9, ABCA1, CAPN9, GPR98,

LMO7, TTN and KRT14. Illustrating the strictness of the algo-

rithm, the PIK3CA gene, which is mutated in 14 patients, is not

identified either as a common driver or as a patient-specific driver in

any of the patients.

The computed DGscore ranges between 0 and 11.8, and a high

DGscore is defined as larger than the median value of 0.54.

Figure 3a shows that breast cancer patients with a high DGscore

have relatively poor survival (P¼0.001). As shown in Figure 3b,

had we simply reported the crude (uncharacterized) number of mu-

tations, with 394 exhibiting high impact and 6738 with moderate

impact, we would not be able to predict the patients’ survival

(P¼0.25), demonstrating the importance of filtering by frequency

of mutation pattern, expression level and functional characterization

by NEA.

Isoforms of a gene are templates for producing distinct but

related proteins. Many isoforms have been found to be implicated in

a wide range of human diseases (Nagao et al., 2005). Thus, it is cru-

cial to separate the isoforms of the same gene. Summarized gene

expression may cancel out the different expression pattern between

isoforms and subsequently affect the counting of drivers. In fact,

DGscore calculated at gene-level is not a significant prognostic
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factor (Fig. 3c, P¼0.12), suggesting the importance of isoform-level

expression. A higher z-score of a candidate driver from NEA implies

a more strongly connected network between a driver and its differ-

entially expressed neighbors, so it seems sensible to assign a large

weight to a high z-score driver. In Figure 3d, we observe that an

unweighted DGscore could predict patient survival, although yield-

ing a slightly less significant P-value of 0.005, when compared with

the P-value of 0.001 derived from the weighted score (Fig. 3a).

As tumor stage, hormone-receptor status and age are known

prognostic factors in breast cancer, next we investigate whether the

DGscore has an independent prognostic effect. Table 1 summarizes

the results of the Cox regression analysis. The first four rows of the

table show the individual predictors in univariate regression, show-

ing DGscore to be the only significant predictor. The last three lines

indicate that DGscore remains highly significant after adjusting for

estrogen-receptor status, tumor stage or age.

An important feature of the DGscore is that it integrates infor-

mation on mutation and expression, each of which provides a differ-

ent view of potential molecular defects in cancer. To include a gene

as a potential driver, over- or under-expression is required for it to

be counted in the DGscore. If we ignore this criterion, all common

drivers and patient-specific driver genes characterized by NEA

would be counted in the DGscore even though not expressed, poten-

tially resulting in false positive cancer drivers. Figure 4a shows that

the incomplete DGscore is not associated with patient survival

(P¼0.72).

Similarly, as the 17 common-driver genes are not mutated in

every patient, we should be careful in accounting for the contribu-

tion of mutated common-driver genes to the DGscore. We should

re-evaluate the survival characteristics associated with the DGscore

in the absence of mutation status for the common-driver genes. To

do so, every common-driver gene is optimistically assumed to con-

tain a somatic mutation, while patient-specific driver genes are

defined and accounted for in the usual way. The survival of patients

with the resulting high DGscore shows no difference to those with

low DGscore (Fig. 4b, P¼0.38). This confirms our hypothesis that

both types of molecular data, the somatic mutation and outlying ex-

pression of the potential driver genes, carry prognostic information.

Another important feature of the DGscore is that it summarizes

the recurrent and individualized signatures in tumors, by incorporat-

ing information contained in common-driver genes and patient-

specific driver genes. When we neglect patient-specific genes and

focus only on common-driver genes, we find that the partial list of

potential drivers cannot predict patient survival well (Fig. 4c,

P¼0.08). We would also miss out on well-established cancer genes

like TP53, which is observed as a patient-specific driver gene in

three patients. Alternatively, when we use NEA to select potential

Fig. 3. Comparison of patient survival for DGscore derived by the full pipeline

versus DGscore calculated when some steps in the pipeline are compro-

mised. A high score (dashed black line) is defined as DGscore larger than the

median value. (a) Functionally characterized drivers refer to the 17 common-

driver genes and all patient-specific drivers identified by fully complying with

the proposed algorithm. (b) Non-functionally characterized mutations refer to

all the 394 mutated isoforms with high mutational impact and 6738 isoforms

with moderate impact. (c) The DGscore is calculated based on gene expres-

sion, rather than isoform expression. (d) The DGscore is calculated following

the proposed algorithm closely, except that the number of drivers is counted

without any weighting scheme

Table 1. Cox proportional-hazard regression models of survival

Variable Hazard ratio P*

DGscore 7.26 0.004

Tumor stagea 1.67, 2.22 0.44, 0.24

ER status 0.90 0.86

Age 0.98 0.30

DGscoreþER statusb 20.23; 0.82 0.005; 0.75

DGscoreþ age 8.04; 1.01 0.007; 0.75

DGscoreþ tumor stagea 6.12; 1.39, 1.77 0.009; 0.62, 0.42

ER, estrogen receptor.
aStage II and stage IIIþ are compared against stage I.
bER negative is used as reference group.

*P-values from the Wald test.

Fig. 4. Comparison of patient survival for DGscore derived based on partial

molecular data. A high score (dashed black line) is defined as DGscore larger

than the median value. (a) Extreme expression is not an inclusion criterion;

the DGscore takes more driver genes into account than in the proposed algo-

rithm. (b) Always include all 17 common drivers in the DGscore regardless of

mutation status. (c) The DGscore takes only common drivers into account. (d)

The DGscore takes only patient-specific drivers into account
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driver genes based on T/N expression profiles within individual pa-

tient only, the survival curves of the high and low DGscore groups

exhibit only a borderline significant difference (P¼0.04, Fig. 4d).

3.2 Prediction comparison
We now compare with the performance of PAM50 ROR-C and

MammaPrint in predicting survival using the TCGA60 samples: see

Figure 5a and b. For the PAM50 signatures, there is little difference

in the prediction based on combined tumor size and intrinsic sub-

types (ROR-C, P¼0.15) compared that based on subtypes only

(ROR-S, P¼0.19), so we only show the former. MammaPrint also

does not produce statistical significant result (P¼0.38). Thus

DGscore is the most significant predictor (Fig. 3a, P¼0.001).

We further investigate whether ROR-C and DGscore predict

prognosis independently. Given barely any correlation between

these two signatures, we fit a Cox proportional hazards regression

model with both as predictors. The P-values for DGscore and ROR-

C are 0.001 and 0.04, respectively, indicating DGscore is an inde-

pendent prognostic factor of survival.

3.3 Non-paired TCGA data
The availability of both DNA and RNA-seq data of paired tumor-

normal tissue in the TCGA60 samples is unique. We cannot find

other public breast cancer datasets that contain as rich information

as in the TCGA60 paired samples. Another set of 671 TCGA breast-

cancer samples, which do not overlap with the TCGA60 samples, is

available from International Cancer Genome Consortium (Zhang

et al., 2011).The dataset is described in detail in the Supplementary

Material (section Non-paired TCGA data). But unfortunately, only

expression data are available for tumor tissues and estimated only at

gene-level. We use the 17 common-driver genes as discovered in the

TCGA60 samples, while patient-specific driver genes are assessed

for the 671 samples. This is because the 17 common-driver genes are

identified based on a list of AGS derived from the top 100 genes

whose isoforms exhibit the greatest DE between all tumor versus all

normal tissues. Thus, we wanted to check if these 17 common-driver

genes are generalizable to other breast cancer patients.

In the absence of matched normal tissue, expression fold-change

of T/N cannot be obtained. So the expression-altered gene set in

NEA is defined as those genes whose absolute expression has the top

100 ranks among patients, to access the patient-specific driver genes.

Vital status data are available, but not survival time, so only the

Wilcoxon rank-sum test is carried out. The test shows no significant

difference in DGscores between patients who have died and those

still alive (P¼0.78). This result is consistent with what we

observe in Figure 3c, demonstrating the necessity of isoform-level

quantification in order for the algorithm to be able to identify poten-

tial cancer drivers. Furthermore using microarray-derived gene ex-

pression, we investigate the properties of the proposed algorithm to

identify putative driver genes, under the circumstances of no muta-

tion data nor isoform-level expression. We obtain a negative result

of P-value 0.75 which is also in line with our expectation, since mu-

tation status and isoform-level information is not available. The

dataset and result are described in detail in the Supplementary

Material (section Swedish microarray data).

4 Discussion

We have developed and illustrated an analytical framework to ex-

ploit the various molecular data that will likely be commonly gath-

ered from cancer patients. This framework allows integration of

mutation, expression and functional data, a weighting scheme for

counting putative driver genes and a method for identifying drivers

in a global and patient-specific manner based on the network enrich-

ment analysis. The resulting score is shown to have clinical relevance

in terms of significant association with patient survival that is stron-

ger compared with other existing expression-based signatures.

Some of the identified potential common-driver genes, such as

FANCA, CHD1L, ADCY10, MUC4, PKHD1, MKI67, OVCH1

and BRCA1, are implicated in many important functional roles in

tumorigenesis, such as DNA repair, cell proliferation and differenti-

ation (Castella et al., 2011; Cooke and Brenton, 2011; Flacke et al.,

2013; Mukhopadhyay et al., 2013; Nishimiya et al., 2014; Pines

et al., 2012; Tang et al., 2014; Zhang et al., 2012). The algorithm

also allows the identification of patient-specific driver genes, which

are candidates for contributing to personalized treatment. The iden-

tified patient-specific genes include the extensively reported tumor

suppressor gene TP53. In a recent study, sustained expression of

mutant TP53 has been shown to be required to drive pancreatic can-

cer metastasis (Weissmueller et al., 2014), implying that for a tumor

suppressor to be deleterious, its expression does not have to be

downregulated. This study also supports our criteria in selecting

potential cancer drivers, for which both mutation and abnormal ex-

pression are required, regardless of the direction of regulation.

Unlike some existing expression-based signatures, our method

does not simply produce prognostic biomarkers. What we gain from

the integration of molecular and functional data is a list of patient-

specific potential cancer drivers, so it has specific implications for

personalized cancer therapy. A well-characterized true driver will

also provide biologists with insights into cancer etiology.

Our study has its limitations. First, it is based on a small sample.

Presently, we are not aware of large-scale study using the paired

tumor-normal samples with both DNA and RNA-sequence data.

But even in this small study, the DGscore is highly correlated with

patient survival, more so than some existing prognostic factors, such

as tumor stage and estrogen-receptor status, and some existing ex-

pression-based signatures. Applying MammaPrint and PAM50 gene

signatures to the TCGA expression data, we observe some differ-

ences in the survival curves, although none of the P-values are sig-

nificant. The failure of these established prognostic markers is most

likely due to the small sample size but perhaps also because they

were trained using distant recurrence/metastasis rather than survival

outcome. Only 67% of the 70 gene identifiers in MammaPrint is

mapped to the RefSeq gene names in the TCGA data, whereas the

unmapped ones are those not annotated to standard databases.

Hence, it is possible that the fewer number of mapped genes relative

to the original study results in the suboptimal performance of

MammaPrint.

Fig. 5. (a) Performance of PAM50 based on the ROR-C score. (b) Performance

of MammaPrint
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Second, since only exome sequencing, but not whole–genome

sequencing, is available, the data cannot capture driver mutations

residing in non-coding regions. Furthermore, the annotation and

functional characterization of genes rely on (i) known databases, (ii)

non-directional biological network and (iii) predicted impact on

protein coding. These are most likely incomplete and not necessarily

validated. With more progress in completing the functional annota-

tion, our approach would make an even more accurate identification

of the potential drivers. Experimentally validated directional net-

works would be useful for assessing the causal relationship between

a putative driver gene and its neighbors. Future works will include

applying the scheme to identify putative cancer drivers in large-scale

datasets in different cancers.

5 Conclusion

We develop a practical analysis pipeline to perform somatic variant

calling, gene and isoform expression quantification and the integra-

tion of genomic and transcriptomic profiles based on known biolo-

gical network and the functional impact on protein coding. Using

this methodology, we show that breast cancer patients who carry

more mutated genes with functional implications and extreme ex-

pression pattern have worse survival than those with less potential

driver genes.
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