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Abstract 

In parametric statistics test, there are some assumptions which must be fulfilled in order to make a valid conclusion. 

Some common assumptions in parametric statistics test are homoscedasticity or homogeneity of variance and 

assumption of normality. Many of us in social sciences deal with data that do not conform to assumptions of 

normality. To analyze non normal data with statistical test that require assumptions of normality, data should be 

transformed to a normal distribution. Box-Cox transformation is well known method and popular among statistician 

to get the normality (univariate and multivariate normal) because it doesn’t require knowledge about data 

characteristics or trial and error to transform any data. Box-Cox method use estimation of parameter λ to do 

transformation,  is obtained by maximize the Box-Cox function. Numerical method like quasi newton BFGS is 

commonly used to maximize the Box-Cox function because this method has fast convergence property but it may fail 

to convergence in some circumstance. In other hand, direct optimization algorithm like Nelder Mead may still be 

convergence in case which quasi newton BFGS fail to convergence but this algorithm generally has slower 

convergence property. In this paper, we will compare efficiency in term of function evaluation and processing time of 

the two algorithms to maximize Box-Cox function on some scenario. 
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1. Introduction 

Normality assumption has been a problem to many researcher  in case using classical statistical method 

dealing with real data. Classical statistical method use normality distribution as basis for determining 

rejection region for hypothetical testing. Violation with these assumption might tend to directing us to the 
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wrong decision. Given the importance of normal distribution, some option that we can choose in case 

violation against normality assumption according to Graybill(1976) in Sakia(1996) are: 

 Ignore the violation of the assumptions and proceed with the analysis as if all assumption are 

satisfied. 

 Decide what is the correct assumption in place, of the one that is violated and use a valid procedure 

that takes into account the new assumption. 

 Design a new model that has important aspects of the original model and satisfies all the assumptions 

example by applying a proper transformation to the data or filtering out some suspect data point 

(outlying). 

 Use a distribution free procedure that is valid even if various assumption are violated. 

Among options available, transformation data to near normality is mostly used. 

 Transformation data to near normality is re-expressing data to another unit with the aim of 

obtaining data that meets normal distribution. According to Zimmerman(1998) and Osborne(2010), 

normal transformation not only beneficial to parametric statistical test but  also can improve the accuracy 

of non parametric  test. However the use of normal transformation must be careful.  Transformation can 

change the nature of data and might be more difficult to interpret the result of transformed data.  

 There are some kind of transformation method. Osborne (2002) mentioned square root, log and 

inverse method. Those transformation requires researcher’s knowledge about characteristic data to be able 

choosing the appropriate transformation method applied to data. That limitation often make researcher  

tried every method when not sure about characteristic data.  Box and cox (1964) proposed transformation 

method which search optimum value from transformation Box-Cox function. The result is the best rank to 

perform data transformation, therefore Box-Cox transformation already included family of power 

transformation (square root, log, inverse, etc.).   

  Box-cox’s transformation formula is available to univariate and multivariate data developed by 

maximum likelihood estimator function. Box-cox function can be solve using analytic approach  where 

maximum value of function  obtained by finding point that has differentiate equal to zero. However, that 

approach is manually difficult to use and require long time searches.  In this case, optimization using 

numerical method is the appropriate solution. Numerical method which is generally known in MLE’s 

parameter and standard error estimation are Newton Rapshon and quasi newton BFGS. Both of them 

become very popular because of small number iteration to reach convergency. To get convergent, both  

Newton Raphson and quasi newton BFGS need additional information in the form of gradient function 

each iteration to expect the next optimum alleged point, so both called gradient based optimization. 

Gradient based optimization algorithm has disadvantages in case of discontinuous functions,   

uncountable derivative value, etc. which make both method failed to convergent. Therefore we need non 

gradient based optimization which is more reliable to reach convergency, one that famous is Nelder Mead 

Simplex Direct Search. In this paper, we will compare efficiency of quasi newton BFGS and Nelder Mead 

when applied to Box-Cox transformation. Section 2.1 we will discuss about Box cox transformation, 

section 2.2 about Nelder Mead Simplex Direct Search, section 2.3 about quasi newton BFGS, and section 

3 about data used and simulation process during research.  

2. Methods 

2.1. Box-Cox Transformation 

In 1957 Tukey introduce a family of power transformation. The transformation equation expressed as : 

 
(1) 
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However, Tukey’s transformation didn’t take account of discontinuity at . Furthermore Box & Cox 

(1964) proposed a modified version of this family of power transformation. With regards in discontinuity 

at  the modified version transformation suggested by Box & Cox is 

 
(2) 

And  

 
(3) 

Estimation of  can be done by Bayesian methods, by maximum likelihood based method, or by 

another method.  Originally Box & Cox (1964) provide maximum likelihood method as well as Bayesian 

method for the estimation of the parameter . In this paper we will discuss about  estimation using 

maximum likelihood method. As we know Box-Cox transformation is primarily used to transform data 

which violated normality assumption so that the transformed data can conforms normality assumption. 

Therefore there are two kind of normality assumption used in statistics, those are univariate normal and 

multivariate normal. Maximum likelihood method for  estimation in Box-Cox transformation 

distinguishes the estimation formula for univariate and multivariate normal. Box-Cox transformation for 

multivariate normal is more complicated than the univariate formula. In practice sometime Box-Cox 

formula for univariate normal is used to get estimation of  for multivariate normal because of the 

complexity in calculation. In this paper we will cover   estimation for both univariate and multivariate 

case. 

2.1.1. Univariate 

For univariate case, the appropriate power  is the solution for maximize the expression 

 (4) 

Where 

 
(5) 

 is the arithmetic average of the transformed observation. 

2.1.2. Multivariate 

 

In multivariate observation, power of transformation can be searched for each variable with equation. 

Let  are power transformation from p variable in data. Then each  are found by maximize 

 (6) 

Where x1k , x2k , …, xnk are nth observation from kth variable. 

 
(7) 
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 is the arithmetic average of the transformed observation. 

 

2.2. Nelder Mead Algorithm 

According to J.A. Nelder and R. Mead (1965), Nelder Mead Simplex Direct Search is defined as “A 

method is described for minimization of function of n variables, which depends on the comparison of 

function values at the (n+1) vertices of a general simplex, followed by the replacement of the vertex with 

highest value by another point. The simplex adapts itself to the local landscape, and contract on to the 

final minimum. The method is shown to be effective and computationally compact. A procedure is given 

for the estimation of the Hessian Matrix in the neighborhood of the minimum, needed in statistical 

estimation problems.” 

Nelder Mead Algorithm require us to define the value of parameters such as coefficients of reflection 

( ), expansion ( ), contraction ( ), and shrinkage ( ) before minimizing a function. The value of those 

parameters must satisfy 

 

The value of coefficients used in Nelder Mead are flexible as long as the parameters conditions are 

satisfied. This could lead  into minor difference between Nelder Mead algorithm used by different author. 

In this paper we use common parameters value for the algorithm where 

 

According to Lagarias et al. the Nelder Mead algorithm steps for one iteration are 

1. Order. Order the n+1 vertices to satisfy  

2. Reflect. Compute the reflection point xr from 

 

Where  is centroid from n best point (all vertices except for xn+1). Evaluate . If 

, accept the reflected point  and terminate the iteration. 

3. Expand. If , calculate the expansion point xe. 

 

And evaluate . if , Accept  and terminate the iteration; otherwise (if ) accept  

dan terminate the iteration. 

4. Contract. if  perform a contraction between  and the better of  and  

a. Outside. If , perform an outside contraction : calculate 

 

And evaluate . If  accept  stop iterasi. Otherwise, go to step 5 (shrink step). 

 

b. Inside. If , perform inside contraction : calculate 

 

c. And evaluate . If  accept  and terminate the iteration; Otherwise, go to 

step 5 (shrink step). 
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5. Perform a shrink step. Evaluate f at the n point , i=2,…,n+1. The unordered 

vertices of simplex at the next iteration consist of  

2.3. Quasi Newton BFGS 

Quasi newton is continued development of newton method that estimate hessian matrix instead of 

using exact differentiation. Hessian matrix used when function that needed to get optimum value consist 

of  more than one variable which denote by : 

 

 

 There is advantage of estimate hessian matrix. Optimum value for unfixed number variables function 

will be easier to get because there’s no need to search differentiate function for different variable 

explicitly just to get the hessian matrix. The classical newton method use following equation to search 

minimum value of function 

 

Many approximations can be used to estimate hessian matrix, one of them that frequently used is 

BFGS method. So, Quasi newton BFGS basically is method to get optimum value of function where to 

estimate hessian matrix using BFGS method. Kurt, Bryan, and Zak bring up the algorithm of finding 

optimum value using quasi newton method: 

1. Initiate initial value  as initial predicted minimum point; i=0; (initial hessian matrix is 

identity matrix with pxp size, where p= number of variables). 

2. Count   and search direction . 

3. Using Line search  to search value of  where  is a value that minimize 

 

4. Count  where   and  is the update of hessian matrix. In this paper, we use   

BFGS method to get  (Note there are several different updating rule for Hessian such as DFP etc). 

 

Hessian matrix using BFGS method update by 

 

where  
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3. Simulation Result 

We use three dataset in this simulation to provide an overview how well the two algorithm solve the 

Box-Cox transformation (both univariate and multivariate case). First Simulation use radiation data of 

door closed and door open from “Applied Multivariate Statistics 5th Edition”, page 181. Second 

simulation use generated data with 500 sample size. The generated data were taken from gamma 

distribution ( ), exponential distribution ( ), and squared normal distribution 

( ). In third simulation we use survey data from BPS (SUSENAS kor triwulan 3 2011 

blok 43). The third simulation use food expenditure, non-food expenditure, income per capita, and 

expenditure as variable. All of variables in third simulation are aggregative data sort by province in 

Indonesia.  

In this simulation we use Java and R to generate data and running the simulation process. Both of 

optimization algorithm using 0 as initial minimum value. 

3.1. Nelder Mead vs Quasi Newton BFGS Performance 

3.1.1. Radiation Data 

Table 1 Comparison of Function Evaluation between Quasi Newton BFGS and Nelder Mead 

Variable 
Marginal (Univariate Box-Cox) Simultaneous (Multivariate Box-Cox) 

BFGS Nelder mead BFGS Nelder mead 

Door Closed 15 30 
16 35 

Door Open 21 32 

Table 2 Comparison of Elapsed Time (in second ) between Quasi Newton BFGS and Nelder Mead 

Simulation 
Marginal (Univariate Box-Cox) Simultaneous (Multivariate Box-Cox) 

BFGS Nelder mead BFGS Nelder mead 

1 0.019331485 0.028886779 0.034593148 0.059916183 

2 0.038517302 0.028886779 0.026931542 0.06467263 

3 0.016545322 0.036451957 0.032389658 0.062368608 

4 0.020559749 0.029267022 0.027601753 0.063092847 

5 0.016247146 0.020382622 0.039609473 0.027093623 

6 0.014794566 0.01534031 0.027488227 0.063090795 

7 0.015282863 0.029325152 0.028337616 0.063064806 

8 0.019220011 0.035298237 0.034227267 0.058602432 

9 0.014209158 0.014334993 0.027136024 0.031490344 

10 0.015124201 0.029288222 0.034184866 0.063712449 

Average 0.01898318 0.026746207 0.03125 0.05571 

3.1.2. Generated Data 

Table 3 Comparison of Function Evaluation between Quasi Newton BFGS and Nelder Mead 
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Variable 
Marginal (Univariate Box-Cox) Simultaneous (Multivariate Box-Cox) 

BFGS Nelder mead BFGS Nelder mead 

V1 (gamma) 11 36 

31 82 V2 (exponential) 23 36 

V3 (chi square) 15 38 

 

Table 4 Comparison of Elapsed Time (in second ) between Quasi Newton BFGS and Nelder Mead 

Simulation Marginal (Univariate Box-Cox) Simultaneous (Multivariate Box-Cox) 
BFGS Nelder mead BFGS Nelder mead 

1 0.055284888 0.115203806 0.229305866 0.455354371 
2 0.066271561 0.119212762 0.25443536 0.470266567 
3 0.056126071 0.107775405 0.244678319 0.463293636 
4 0.061207365 0.118074087 0.234084881 0.467130936 
5 0.056615736 0.100893432 0.240787676 0.483166761 
6 0.055364219 0.118448174 0.223415532 0.459529512 
7 0.059190577 0.11106833 0.242823612 0.477459709 
8 0.054575695 0.099898374 0.257206478 0.457195399 
9 0.057264746 0.108566665 0.237874993 0.478134023 
10 0.062617543 0.111782994 0.259513919 0.476619209 
Average 0.05845184 0.111092403 0.242412664 0.468815012 

3.1.3. SUSENAS Data 

Table 5 Comparison of Function Evaluation between Quasi Newton BFGS and Nelder Mead 

Variable Marginal (Univariate Box-Cox) Simultaneous (Multivariate Box-Cox) 

BFGS Nelder mead BFGS Nelder mead 

V1 9 30 

432 232 
V2 21 30 

V3 9 32 

V4 18 30 

V5 14 32 

Table 6 Comparison of Elapsed Time (in second ) between Quasi Newton BFGS and Nelder Mead 

Simulation Marginal (Univariate Box-Cox) Simultaneous (Multivariate Box-Cox) 

BFGS Nelder mead BFGS Nelder mead 

1 0.027268698 0.066015103 0.589151061 0.435189909 

2 0.025188309 0.064844969 0.602391832 0.435628966 

3 0.024275317 0.064827872 0.590433353 0.433271601 

4 0.03300037 0.071862353 0.587689591 0.440749925 

5 0.026002137 0.066482199 0.598696098 0.438091649 

6 0.025440663 0.064880531 0.589017019 0.436830559 

7 0.030915877 0.066659326 0.603449809 0.433643637 

8 0.028483969 0.071748826 0.594827339 0.445973468 

9 0.025499478 0.064926352 0.595516014 0.440810107 

10 0.028265125 0.067280981 0.592387223 0.441822263 

Average 0.027433994 0.066952851 0.594355934 0.438201208 
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4. Conclusion 

In this paper we have focused to comparing efficiency of quasi-newton BFGS and Nelder Mead 

algorithm applied to Box-cox transformation. Generally quasi newton BFGS perform more efficient than 

Nelder Mead algorithm in terms of number of functions evaluations and number of iteration. However, 

the time differences among those two algorithm is slightly different. Simulation using SUSENAS’s data 

result in condition where Nelder Mead algorithm is more efficient than quasi-newton BFGS in case of 

multivariate data transformation. From the simulation, we can conclude that generally quasi newton 

BFGS  perform more efficient than Nelder Mead when applied in Box-Cox transformation formula. 

However the time elapsed and evaluation function difference between the two algorithm sometime are so 

small and become negligible. Therefore, both algorithm can be used side by side to overcome the 

weakness of each method, then case which failed to convergent can be minimalized. 

In this research we also did normality test before and after the Box-Cox transformation applied to 

dataset. For testing univariate normal assumption, we use liliefors and Shapiro wilks test. Meanwhile for 

testing multivariate normal assumption, we use multivariate shapiro wilks and mardia kurtosis test. All 

dataset in this paper is not conform both univariate and multivariate normal assumption before Box-Cox 

transformation applied. In Radiation Data after univariate (marginal) Box-Cox transformation  applied to 

it, liliefors test result in accept H0 for Door Closed Variable (passed univariate normal test) and reject H0 

for Door Open Variable (didn’t pass univariate normal test), however when Shapiro wilks test used 

against transformed data all variable are passed univariate normal test. Furthermore when multivariate 

(simultaneous) Box-Cox transformation applied to Radiation Data, both shapiro wilks and mardia kurtosis 

test result in accept H0 thus transformed data is multivariate normal according to the test. For the rest of 

dataset (Generated Data, Susenas Data), Box-Cox transformation make data passed univariate and 

multivariate normal assumption except for V3 (chi square) variable from generated data which failed to 

conform the univariate normal assumption and Susenas Data which failed to conform the multivariate 

normal assumption. According to the simulation in this research the Box-Cox transformation can remedy 

non-univariate and non-multivariate normal data to conform univariate normal and multivariate normal 

distribution well enough. As a note the different univariate normal and multivariate normal test can be 

produce a different conclusion in the end. According to the simulation the Box-Cox transformation also is 

not guaranteed the transformed data to pass the normality test, the more data resembled normal 

distribution before transformation (i.e. skewness of data, kurtosis of data), the more transformed data to 

conform the univariate normal and multivariate normal distribution. 
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