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Abstract

In parametric statistics test, there are some assumptions which must be fulfilled in order to make a valid conclusion.
Some common assumptions in parametric statistics test are homoscedasticity or homogeneity of variance and
assumption of normality. Many of us in social sciences deal with data that do not conform to assumptions of
normality. To analyze non normal data with statistical test that require assumptions of normality, data should be
transformed to a normal distribution. Box-Cox transformation is well known method and popular among statistician
to get the normality (univariate and multivariate normal) because it doesn’t require knowledge about data
characteristics or trial and error to transform any data. Box-Cox method use estimation of parameter A to do
transformation, 4 is obtained by maximize the Box-Cox function. Numerical method like quasi newton BFGS is
commonly used to maximize the Box-Cox function because this method has fast convergence property but it may fail
to convergence in some circumstance. In other hand, direct optimization algorithm like Nelder Mead may still be
convergence in case which quasi newton BFGS fail to convergence but this algorithm generally has slower
convergence property. In this paper, we will compare efficiency in term of function evaluation and processing time of
the two algorithms to maximize Box-Cox function on some scenario.
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1. Introduction

Normality assumption has been a problem to many researcher in case using classical statistical method
dealing with real data. Classical statistical method use normality distribution as basis for determining
rejection region for hypothetical testing. Violation with these assumption might tend to directing us to the
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wrong decision. Given the importance of normal distribution, some option that we can choose in case

violation against normality assumption according to Graybill(1976) in Sakia(1996) are:

e Ignore the violation of the assumptions and proceed with the analysis as if all assumption are
satisfied.

e Decide what is the correct assumption in place, of the one that is violated and use a valid procedure
that takes into account the new assumption.

e Design a new model that has important aspects of the original model and satisfies all the assumptions
example by applying a proper transformation to the data or filtering out some suspect data point
(outlying).

e Use a distribution free procedure that is valid even if various assumption are violated.

Among options available, transformation data to near normality is mostly used.

Transformation data to near normality is re-expressing data to another unit with the aim of
obtaining data that meets normal distribution. According to Zimmerman(1998) and Osborne(2010),
normal transformation not only beneficial to parametric statistical test but also can improve the accuracy
of non parametric test. However the use of normal transformation must be careful. Transformation can
change the nature of data and might be more difficult to interpret the result of transformed data.

There are some kind of transformation method. Osborne (2002) mentioned square root, log and
inverse method. Those transformation requires researcher’s knowledge about characteristic data to be able
choosing the appropriate transformation method applied to data. That limitation often make researcher
tried every method when not sure about characteristic data. Box and cox (1964) proposed transformation
method which search optimum value from transformation Box-Cox function. The result is the best rank to
perform data transformation, therefore Box-Cox transformation already included family of power
transformation (square root, log, inverse, etc.).

Box-cox’s transformation formula is available to univariate and multivariate data developed by
maximum likelihood estimator function. Box-cox function can be solve using analytic approach where
maximum value of function obtained by finding point that has differentiate equal to zero. However, that
approach is manually difficult to use and require long time searches. In this case, optimization using
numerical method is the appropriate solution. Numerical method which is generally known in MLE’s
parameter and standard error estimation are Newton Rapshon and quasi newton BFGS. Both of them
become very popular because of small number iteration to reach convergency. To get convergent, both
Newton Raphson and quasi newton BFGS need additional information in the form of gradient function
each iteration to expect the next optimum alleged point, so both called gradient based optimization.
Gradient based optimization algorithm has disadvantages in case of discontinuous functions,
uncountable derivative value, etc. which make both method failed to convergent. Therefore we need non
gradient based optimization which is more reliable to reach convergency, one that famous is Nelder Mead
Simplex Direct Search. In this paper, we will compare efficiency of quasi newton BFGS and Nelder Mead
when applied to Box-Cox transformation. Section 2.1 we will discuss about Box cox transformation,
section 2.2 about Nelder Mead Simplex Direct Search, section 2.3 about quasi newton BFGS, and section
3 about data used and simulation process during research.

2. Methods
2.1. Box-Cox Transformation
In 1957 Tukey introduce a family of power transformation. The transformation equation expressed as :
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However, Tukey’s transformation didn’t take account of discontinuity at #=0. Furthermore Box & Cox
(1964) proposed a modified version of this family of power transformation. With regards in discontinuity
at =0 the modified version transformation suggested by Box & Cox is
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Estimation of % can be done by Bayesian methods, by maximum likelihood based method, or by
another method. Originally Box & Cox (1964) provide maximum likelihood method as well as Bayesian
method for the estimation of the parameter k. In this paper we will discuss about % estimation using
maximum likelihood method. As we know Box-Cox transformation is primarily used to transform data
which violated normality assumption so that the transformed data can conforms normality assumption.
Therefore there are two kind of normality assumption used in statistics, those are univariate normal and
multivariate normal. Maximum likelihood method for i estimation in Box-Cox transformation
distinguishes the estimation formula for univariate and multivariate normal. Box-Cox transformation for
multivariate normal is more complicated than the univariate formula. In practice sometime Box-Cox
formula for univariate normal is used to get estimation of X for multivariate normal because of the
complexity in calculation. In this paper we will cover & estimation for both univariate and multivariate

case.

2.1.1. Univariate
For univariate case, the T;?proprlate power % is the solution for maximize the expression
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Where
D=2y I () (5)
x“ is the arithmetic average of the transformed observation.

2.1.2. Multivariate

In multivariate observation, power of transformation can be searched for each variable with equation.
Let %1.77,.... 0 are power trTgsformatlon from p variable in data. Then each %; are found by maximize

L0 )=-<in|- S‘ e x|+ (-1 T Inx; (6)

Where Xik, Xz , ..., Xnkare nth observation from kth variable.
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x" is the arithmetic average of the transformed observation.

2.2. Nelder Mead Algorithm

According to J.A. Nelder and R. Mead (1965), Nelder Mead Simplex Direct Search is defined as “A
method is described for minimization of function of n variables, which depends on the comparison of
function values at the (n+1) vertices of a general simplex, followed by the replacement of the vertex with
highest value by another point. The simplex adapts itself to the local landscape, and contract on to the
final minimum. The method is shown to be effective and computationally compact. A procedure is given
for the estimation of the Hessian Matrix in the neighborhood of the minimum, needed in statistical
estimation problems.”

Nelder Mead Algorithm require us to define the value of parameters such as coefficients of reflection
(p), expansion (y), contraction (y), and shrinkage (z) before minimizing a function. The value of those
parameters must satisfy

g=0, y=I, y=p, O0<p<d, and O<g<l]

The value of coefficients used in Nelder Mead are flexible as long as the parameters conditions are
satisfied. This could lead into minor difference between Nelder Mead algorithm used by different author.
In this paper we use common Parameters va!,ue for the algorithm where

o=I, y=2, y=p, y=7, and o=

According to Lagarias et al. the Nelder Mead algorithm steps for one iteration are
1. Order. Order the n+1 vertices to satisfy f{z; J=flx, 1= =flx, ]
2. Reflect. Compute the reflection point x, from

X, =X+ p (X )= +p)Epxy
Where =¥%, =;/n is centroid from n best point (all vertices except for xn+1). Evaluate f=fx). If

f;=f=f,, accept the reflected point =, and terminate the iteration.
3. Expand. If f,=f;, calculate the expansion point Xe.

xp =X+ O =5+ (o, )= U+ ) g,
And evaluate f.=fx.}. if £.<f,, Accept =, and terminate the iteration; otherwise (if f.=f) accept x
dan terminate the iteration.

4. Contract. if f, = £, perform a contraction between x and the better of = ., and =,
a. Outside. Iff, = £, = f_,,, perform an outside contraction : calculate

x,=x+v(x, -2 =3+ (- x,.) = O+ p)x + oy,
And evaluate £, = fix.)}. If f, = £ accept %, stop iterasi. Otherwise, go to step 5 (shrink step).

b. Inside. If £, = f__,, perform inside contraction : calculate

T = ‘n+1y

e =% +v(F - xy) = (1 =0T+ vxa,

c. And evaluate f,, = f(x,. ). If f,, < £, accept %, and terminate the iteration; Otherwise, go to
step 5 (shrink step).
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5. Perform a shrink step. Evaluate f at the n point v, = =, + o{x, — ), i=2,...,n+1. The unordered
vertices of simplex at the next iteration consist of x,, s, ... ¥, .4

2.3. Quasi Newton BFGS

Quasi newton is continued development of newton method that estimate hessian matrix instead of
using exact differentiation. Hessian matrix used when function that needed to get optimum value consist
of more than one variable which denote by :

v oa wox L1
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There is advantage of estimate hessian matrix. Optimum value for unfixed number variables function
will be easier to get because there’s no need to search differentiate function for different variable
explicitly just to get the hessian matrix. The classical newton method use following equation to search
minimum vaIPe of function
3{1'_]_=.‘{.i-H1T Vf
Many approximations can be used to estimate hessian matrix, one of them that frequently used is
BFGS method. So, Quasi newton BFGS basically is method to get optimum value of function where to
estimate hessian matrix using BFGS method. Kurt, Bryan, and Zak bring up the algorithm of finding
optimum value using quasi newton method:
1. Initiate initial value =, as initial predicted minimum point; i=0; H, = I(initial hessian matrix is
identity matrix with pxp size, where p= number of variables).

2. Count Vf(x;J) and search direction h; = —H;Vf(x;).

3. Using Line search to search value of x;,; = x; + t*h; where t* is a value that minimize
flxi+t7hy)

4. Count H;,; where H;,, = H;+ U; and U; is the update of hessian matrix. In this paper, we use
BFGS method to get I7; (Note there are several different updating rule for Hessian such as DFP etc).

Hessian matrix using BFGS method update by
Oy H j‘ Hydi N ( 14 ¥ H[?’[]ﬁiﬁf

rT ..

Hi,=Hy— rT .. rT ..

where 8; =X, — X5, ¥ = Gie1 — G0 §i = VFlxg)
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3. Simulation Result

We use three dataset in this simulation to provide an overview how well the two algorithm solve the
Box-Cox transformation (both univariate and multivariate case). First Simulation use radiation data of
door closed and door open from “Applied Multivariate Statistics 5th Edition”, page 181. Second
simulation use generated data with 500 sample size. The generated data were taken from gamma
distribution ( ©=7, =3 ), exponential distribution ( B=2 ), and squared normal distribution
(W(u =10, = 50)?). In third simulation we use survey data from BPS (SUSENAS kor triwulan 3 2011
blok 43). The third simulation use food expenditure, non-food expenditure, income per capita, and
expenditure as variable. All of variables in third simulation are aggregative data sort by province in
Indonesia.

In this simulation we use Java and R to generate data and running the simulation process. Both of
optimization algorithm using 0 as initial minimum value.

3.1. Nelder Mead vs Quasi Newton BFGS Performance

3.1.1. Radiation Data

Table 1 Comparison of Function Evaluation between Quasi Newton BFGS and Nelder Mead

Variable Marginal (Univariate Box-Cox) | Simultaneous (Multivariate Box-Cox)
BFGS Nelder mead BFGS Nelder mead
Door Closed 15 30
16 35
Door Open 21 32
Table 2 Comparison of Elapsed Time (in second ) between Quasi Newton BFGS and Nelder Mead
Simulation Marginal (Univariate Box-Cox) Simultaneous (Multivariate Box-Cox)
BFGS Nelder mead BFGS Nelder mead
1 0.019331485 0.028886779 0.034593148 0.059916183
2 0.038517302 0.028886779 0.026931542 0.06467263
3 0.016545322 0.036451957 0.032389658 0.062368608
4 0.020559749 0.029267022 0.027601753 0.063092847
5 0.016247146 0.020382622 0.039609473 0.027093623
6 0.014794566 0.01534031 0.027488227 0.063090795
7 0.015282863 0.029325152 0.028337616 0.063064806
8 0.019220011 0.035298237 0.034227267 0.058602432
9 0.014209158 0.014334993 0.027136024 0.031490344
10 0.015124201 0.029288222 0.034184866 0.063712449
Average 0.01898318 0.026746207 0.03125 0.05571

3.1.2. Generated Data

Table 3 Comparison of Function Evaluation between Quasi Newton BFGS and Nelder Mead
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. Marginal (Univariate Box-Cox) Simultaneous (Multivariate Box-Cox)
Variable BFGS Nelder mead BFGS Nelder mead
V1 (gamma) 11 36
V2 (exponential) | 23 36 31 82
V3 (chi square) 15 38

Table 4 Comparison of Elapsed Time (in second ) between Quasi Newton BFGS and Nelder Mead

Simulation Marginal (Univariate Box-Cox) Simultaneous (Multivariate Box-Cox)
BFGS Nelder mead BFGS Nelder mead
1 0.055284888 0.115203806 0.229305866 0.455354371
2 0.066271561 0.119212762 0.25443536 0.470266567
3 0.056126071 0.107775405 0.244678319 0.463293636
4 0.061207365 0.118074087 0.234084881 0.467130936
5 0.056615736 0.100893432 0.240787676 0.483166761
6 0.055364219 0.118448174 0.223415532 0.459529512
7 0.059190577 0.11106833 0.242823612 0.477459709
8 0.054575695 0.099898374 0.257206478 0.457195399
9 0.057264746 0.108566665 0.237874993 0.478134023
10 0.062617543 0.111782994 0.259513919 0.476619209
Average 0.05845184 0.111092403 0.242412664 0.468815012

3.1.3. SUSENAS Data

Table 5 Comparison of Function Evaluation between Quasi Newton BFGS and Nelder Mead

Variable |_Marginal (Univariate Box-Cox) Simultaneous (Multivariate Box-Cox)
BFGS Nelder mead BFGS Nelder mead

V1 9 30

V2 21 30

V3 9 32 432 232

V4 18 30

V5 14 32

Table 6 Comparison of Elapsed Time (in second ) between Quasi Newton BFGS and Nelder Mead

Simulation | Marginal (Univariate Box-Cox) Simultaneous (Multivariate Box-Cox)
BFGS Nelder mead BFGS Nelder mead
1 0.027268698 0.066015103 0.589151061 0.435189909
2 0.025188309 0.064844969 0.602391832 0.435628966
3 0.024275317 0.064827872 0.590433353 0.433271601
4 0.03300037 0.071862353 0.587689591 0.440749925
5 0.026002137 0.066482199 0.598696098 0.438091649
6 0.025440663 0.064880531 0.589017019 0.436830559
7 0.030915877 0.066659326 0.603449809 0.433643637
8 0.028483969 0.071748826 0.594827339 0.445973468
9 0.025499478 0.064926352 0.595516014 0.440810107
10 0.028265125 0.067280981 0.592387223 0.441822263
Average 0.027433994 0.066952851 0.594355934 0.438201208
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4. Conclusion

In this paper we have focused to comparing efficiency of quasi-newton BFGS and Nelder Mead
algorithm applied to Box-cox transformation. Generally quasi newton BFGS perform more efficient than
Nelder Mead algorithm in terms of number of functions evaluations and number of iteration. However,
the time differences among those two algorithm is slightly different. Simulation using SUSENAS’s data
result in condition where Nelder Mead algorithm is more efficient than quasi-newton BFGS in case of
multivariate data transformation. From the simulation, we can conclude that generally quasi newton
BFGS perform more efficient than Nelder Mead when applied in Box-Cox transformation formula.
However the time elapsed and evaluation function difference between the two algorithm sometime are so
small and become negligible. Therefore, both algorithm can be used side by side to overcome the
weakness of each method, then case which failed to convergent can be minimalized.

In this research we also did normality test before and after the Box-Cox transformation applied to
dataset. For testing univariate normal assumption, we use liliefors and Shapiro wilks test. Meanwhile for
testing multivariate normal assumption, we use multivariate shapiro wilks and mardia kurtosis test. All
dataset in this paper is not conform both univariate and multivariate normal assumption before Box-Cox
transformation applied. In Radiation Data after univariate (marginal) Box-Cox transformation applied to
it, liliefors test result in accept Ho for Door Closed Variable (passed univariate normal test) and reject Ho
for Door Open Variable (didn’t pass univariate normal test), however when Shapiro wilks test used
against transformed data all variable are passed univariate normal test. Furthermore when multivariate
(simultaneous) Box-Cox transformation applied to Radiation Data, both shapiro wilks and mardia kurtosis
test result in accept Ho thus transformed data is multivariate normal according to the test. For the rest of
dataset (Generated Data, Susenas Data), Box-Cox transformation make data passed univariate and
multivariate normal assumption except for V3 (chi square) variable from generated data which failed to
conform the univariate normal assumption and Susenas Data which failed to conform the multivariate
normal assumption. According to the simulation in this research the Box-Cox transformation can remedy
non-univariate and non-multivariate normal data to conform univariate normal and multivariate normal
distribution well enough. As a note the different univariate normal and multivariate normal test can be
produce a different conclusion in the end. According to the simulation the Box-Cox transformation also is
not guaranteed the transformed data to pass the normality test, the more data resembled normal
distribution before transformation (i.e. skewness of data, kurtosis of data), the more transformed data to
conform the univariate normal and multivariate normal distribution.
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