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Abstract. Linearity test is important step in statistical analysis. It will certify the 

statistical method, i.e. linear or nonlinear, which is employed in data analysis. The 

objective of this paper is to propose a Lagrange Multiplier (LM) test for nonlinearity 

detection in Structural Equation Model (SEM). This LM test is needed to validate the 

linear relation assumption between latent variables in standard SEM. Moreover, this LM 

test is also very crucial and needed before applying non-linear SEM, i.e. SEM with 

polynomial and interaction of relation between latent variables. In this paper, a simulation 

study is carried out to verify the effectiveness of this linearity test both in partial and 

simultaneous relation between latent variables. The results show that the LM test is an 

effective tool to detect nonlinearity relation between latent variables in nonlinear SEM. 

Furthermore, this LM test is also an effective tool to validate the linear relation 

assumption between latent variables in standard SEM. 

 

Keywords: LM Test, Linearity Test, Standard SEM, Nonlinear SEM, Polynomial, 

Interaction. 

 

 
 

1   Introduction  
In last two decades the Structural Equation Model (SEM) has been widely used 

in social research. SEM is a model that represent a relation between latent variables 

which could not be measured directly. SEM become powerful because it enables the 

researchers to estimate the coefficient of linear model with controlling the bias effect in 

error measurement Kenny and Judd [1]. 

It is needed to develop an analysis that cover nonlinear relation between latent 

variables, specially in social science and behavior research Moosbrugger, Engel, Klein, 

Kelava [2]. Lee [3] clarify that nonlinear analysis is important to get a strong analysis and 

interpretation in order to find a suitable model particularly for a complex problems. From 

previous research, nonlinear effect is caused by interaction effect between predictors or 

quadratic effect. Interaction effect occur when relation between predictors and criterion 
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become strong or weak because of the second predictors. The quadratic effect arise when 

the predictor interacted with itself Moosbrugger et.al [2].  

Kenny and Judd [1] explain the simple thing of structural model of latent 

variables that is: it involve two estimation procedures. First it takes factor analysis and 

second it put the covariance between factors to multiple regression procedure. However 

there is an advantage of linear model estimation in multiple regression which is different 

with latent variable model. This advantage of multiple regression is: the effect of 

nonlinear will be estimated in simple way.  

In multiple regression, the assumption of relation between variables is a linear 

function. For instance, 𝑌 linear function of 𝑋1 and 𝑋2, thus 𝑋1 and 𝑋2 linear to 𝑌, but it is 

possible to non-linear relation in the function if the relation 𝑋1 to 𝑌 induce with 𝑋2 or 𝑋1 

itself. The analysis in interaction effect put a cross product between predictors (𝑋1 𝑋2) 

and quadratic effect will put 𝑋1
2 atau  𝑋2

2. 
Some methods have been developing the estimation of interaction effect in SEM. 

Kenny & Judd ([1] proposed a model of interaction between latent variables (predictors) 

were estimated with cross product of indicators. In 1995 this method expanded by Jaccard 

& Wang which use multiple cross product of indicators. In 1996 Joreskog & Yang 

suggested a method with single cross product of indicators. Other alternative methods 

developed in 1998 by Johnsons then Joreskog in 2000 which suggested that the 

interaction analysis was directly estimated with cross product of factor scores of latent 

variables Porzio and Vitale [4]  

One of the important step in nonlinear analysis is linearity test. This test will 

analyze both in relation between indicators and relation between latent variables. Porzio 

and Vitale [4] proposed the linearity test on SEM model by using graphical approach. 

This paper proposed a simulation study of linearity test in SEM with Lagrange Multiplier 

Type Test.  

 

2   Linearity Test with Lagrange Multiplier Type 

Lagrange Multiplier test (LM test) is an alternative of Ramsey’s Test. Testing 

problems non-linear hypothesis such as 𝑔(𝜃) = 0 are considered where 𝑔 is a 𝑝 × 1 

vector function define on 𝜃. If the true value of 𝜃 under the null be 𝜃0 then 𝑔(𝜃0) = 0. 

The expand of Taylor series: 

𝑔(𝜃) = 𝑔(𝜃0) +  𝐺(�̅� )(𝜃 −  𝜃0) 
 

where �̅� lies between θ and 𝜃0 and 𝐺(. ) is the first derivative matrix of g, for the null,  𝜃 

approach 𝜃0 so  𝐺(�̅� ) ⇾  𝐺(𝜃0) = 𝐺 and the restriction of linear hypothesis is 𝐺𝜃 =
𝐺𝜃0 

Lagrange Multiplier test is derive from a constrained maximization principle. The 

maximization of the log-likelihood subject to the constraint that θ=𝜃0. Let H be a 

Lagrangian: 

𝐻 = 𝐿(𝜃, 𝑦) − 𝜆′(𝜃 −  𝜃0) 
 

 

the first order condition are: 

(1) 

(2) 

(3) 
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𝑑𝐿

𝑑𝜃
=  𝜆;   θ =  𝜃0 

 

So 𝜆 = 𝑠(𝜃0, 𝑦). Assuming a central limit theorem then: 

𝜉𝐿𝑀 =  𝑠′(𝜃0, 𝑦)ℱ−1(𝜃0)𝑠(𝜃0, 𝑦)/𝑇 

Will have a limiting 𝜒2 distribution with 𝑘 degrees of freedom under the null, where 𝑇 is 

vector random of samples, and ℱ is Fisher’s information.  

The procedure of LM test is if there are two function with two predictors, for 

instance in linear or cubic then the first function will be a restriction of the second 

function. An example: if there is a linear function   

𝑌𝑖 = 𝜆1 + 𝜆2𝑋1𝑖 + 𝜆3𝑋2𝑖 + 𝑢𝑖 

and the next function in cubic is : 

𝑌𝑖 = 𝛽1 +  𝛽2𝑋1𝑖 + 𝛽3𝑋2𝑖
2 + 𝛽4𝑋1𝑖

3 + 𝑢𝑖  

 

The algorithm of LM test is : 

1. Estimate the restriction regression with OLS of first equation (5) to obtain residual 𝑢�̂�. 

2. If the second equations are  the true regression, thus the residual which were obtained 

from the first equation should be related to cubed and squared output term that is 𝑋𝑖
2 

and  𝑋𝑖
3.  

3. thus the equation of 𝑢�̂�  which is obtained from the first step is : 

𝑢�̂� = 𝛼1 + 𝛼2𝑋1𝑖 + 𝛼3𝑋2𝑖
2 + 𝛼4𝑋1𝑖

3 + 𝑣𝑖 

Where 𝑣𝑖 is error of each equation in i 

4. For a large sample (n), multiply n with R2 then estimation from the equation (7) 

follow the chi-square distribution with df equal to sum of restriction,thus it will be rid 

of the model, therefore it can be written as:    

𝑛𝑅2~ 𝑋(number of 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛)
2  

5. If the chi-square value which is obtained from equation (8) more than critical value of 

significant level, thus the restriction regression is rejected, the other way if chi-square 

value less than critical value of significant level then it is accepted.  

 

2.1 Terasvirta test 
Terasvirta test is one of Lagrange Multiplier test which employed in nonlinearity 

analysis based on theory of neural network. Subanar and Suhartono[17], explained there  

is not a test can detect all nonlinear possibility, thus it is possible to need more than one 

test. But the result of a test could be a direction about a nonlinearity of the model. In 

order to understand of Terasvirta test, consider this nonlinear model : 

 

𝑦𝑡 = 𝛷(𝑦′𝜔𝑡) + 𝜋′𝜔𝑡 + 𝑢𝑡 

where  𝑢𝑡 ∽ nid(0, 𝜎2), 𝜔𝑡(1, 𝜔𝑡)̃, 𝜔𝑡 = (𝑦𝑡−1, … , 𝑦𝑡−1)   π = (π0, π1, … πp) 

(5) 

(6) 

(7) 

(8) 

(4) 

(9) 
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y = (𝑦0, y̅′)  �̅� = (𝑦1 … 𝑦𝑝). Set : 

𝛷(𝑦′𝜔𝑡) = 𝜃0𝜓(𝑦′𝜔𝑡)   

where 

𝜓(𝑦′𝜔𝑡) = (1 + exp(−𝑦′𝜔𝑡))−1 − 1
2⁄  

then the hypothesis 𝑦𝑡 is linear :  

𝐻0: 𝜃0 = 0 

Consider equation (9) interpreted as nonlinear autoregressive model in which the 

intercept is π0 +  ψ(y′ωt) as a time varying and changes smoothly from π0 −
θ0

2⁄   to 

π0 + 
θ0

2⁄  w with y′ωt. considering that model (9) is a special case of the following 

neural network model with a single hidden layer: 

𝑦𝑡 = 𝜋′𝜔𝑡 + ∑ 𝜃0
𝑞
𝑗=1 {𝜓(𝑦′𝜔𝑡) − 1

2⁄ } + 𝑢𝑡 

From (9) and (10) thus the hypothesis that 𝑦𝑡 is linear i.e. 𝑦𝑡 = 𝜋′𝜔𝑡 + 𝑢𝑡. Within (13) 

𝐻0: 𝜃01 = ⋯ = 𝜃𝑞 = 0 is called the linearity hypothesis of neural network test. Note that  

𝜓(0) = 0 another possible null hypothesis of linearity is  

𝐻0
′ : ϒ = 0 

against the alternative ϒ ≠ 0. The simplest approximation is the first-order one. From 

(10), it is seen that  

𝜕

𝜕ϒ
= 𝜓(𝑦′𝜔𝑡)|ϒ=0 = 𝜓′(0)𝜔𝑡 

Thus the approximation 𝜃0𝑡1(𝑦′𝜔𝑡) = 𝜃0𝜓′(0)𝑦′𝜔𝑡 merge with linear part of model (9), 

so that all the information about non-linearity is lost. This is another way of seeing that 

(9) with (10) and the linear autoregressive model of order p are locally equivalent 

alternative with respect to (13) Terasvirta, Fu & Granger [18]  

3   Simulation Study 

Simulation study performed for analyzing the implementation Lagrange 

Multiplier type test on non linearity test of SEM model. The simulation will carry out in 

three data groups. The first group is a group with variance covariance matrix without 

multicolinearity, the second group with multicolinearity about 0.5 and the third group 

with multicolinearity close to 1 (0.8). This simulation was done in simple way, engage 

three latent variable with each indicators. The indicators and variable were randomly 

generate in 100 data  (𝑛 = 100) with  normal multivariate and 휀~(0,0.1). linearity test 

was performed in two step. First, the test for linearity between latent variable and each 

indicator and second, the linearity between latent variable and all indicators.  

(10) 

(11) 

(13) 

(14) 

(15) 

(12) 
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The model of this simulation was shown in this diagram:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1   Linearity Test in Quadratic and Cubic Effect 

The equation to investigate a quadratic effect in model is:  

𝑌 = 𝑋1
2 − 𝑋2

3 + 𝑋3 + 휀 

From this simulation, the element of quadratic in model were obtained from the 

linearity of the first level quadratic which reach the level significant value. From table 1, 

the significant value of  𝑥1
2=0.4177, 𝑥2

3 =0.4103 dan 𝑥3 = 0.9915, it means that 

𝑋3, 𝑥1
2, 𝑥2

3 become the elements of non linear relation between latent variable and 

indicators in 𝑌 = 𝑋1
2 − 𝑋2

3 + 𝑋3 + 휀  

The simulation that employed variance covariance matrix with multicolinerity 

about 0.5, the linearity of each indicators completed these conditions: (a) for each 

indicator, the element of non linear will determine in the first structure of polynomial 

which reach the significant value. For instance, in table 2, p-value of  𝑥1
2=0.5996 and p-

value of  𝑥1
3 =0.9825, both 𝑥1

2 and 𝑥1
3 reach the significant level. Because of 𝑥1

2  is more 

simple structure of polynomial than 𝑥1
3 thus 𝑥1

2 will put as an element of non linear 

equation. (b) if all combination of indicators less than significant value, then the highest 

p-value will put as an element of non linear equation. (c) if all the p-value more than 

significant value, then the simplest  structure of polynomial will put as an element of non 

linear equation 

From simulation which multicoliniearity close to 1 (0.8), the combination of 

element quadratic in model, are more difficult to be recognize with significant value. It 

mean that linearity test for data with high multicolinearity should be analyzed in different 

way.  

 

(16) 

Figure 1 Structure of linear SEM 
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3.2   Linearity Test for Interaction Effect  

Simulation in linearity test for interaction effect were carried out with the same 

condition in simulation of quadratic and cubic effect. It was involved three data groups: 

first group, the data without multicolinearity, the second group the data with 

multicolinearity around  0.5 and the last group close to 1 (0.8). The equation of 

interaction effect is:  

Variable 
Uncorrelated Multicolinearity 

0.5 0.8 

 𝑥1 ⇾ 𝑦 0.0065 0.0002 3.383𝑒−08 

 𝑥1
2 ⇾ 𝑦 0.4177 0.5996 0.04904 

 𝑥1
3 ⇾ 𝑦 0.0013 0.9825 2.600𝑒−10 

 𝑥2 ⇾ 𝑦 <2.2𝑒−16 <2.2𝑒−16 <2.2𝑒−16 

 𝑥2
2 ⇾ 𝑦 6.326𝑒−10 4.219𝑒−14 0.5411 

 𝑥2
3 ⇾ 𝑦 0.4103 0.0008 0.0006 

 𝑥3 ⇾ 𝑦 0.9915 0.9447 3.978𝑒−05 

 𝑥3
2 ⇾ 𝑦 0.8796 0.9771 0.6861 

 𝑥3
3 ⇾ 𝑦 0.9672 0.9171 0.0096 

(𝑥1, 𝑥2 , 𝑥3) ⇾ 𝑦 <2.2𝑒−16 <2.2𝑒−16 <2.2𝑒−16 

(𝑥1
2, 𝑥2

3, 𝑥3) ⇾ 𝑦 0.8430 0.4503 0.2679 

Table 1.  Result of non-linearity  Test 

Figure 1 Structure of  non-linear SEM  

with  quadratic & cubic effect 
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𝑌 = 𝑋1 + 𝑋2 + (𝑋1𝑋2) + 𝑋3 + 휀 

From the simulation, the elements of interaction effect can be analyzed with all 

indicators and the combination of indicators. If the significant value more than critical 

value as a result the indicators and the combination of indicators were put in the model 
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Variable 
Uncorrelated 

Multicolinearity 

 0.5 0.8 

 𝑥1⇾ 𝑦 0.1481 9.46e−05 5.532e−09 
 𝑥2⇾𝑦 0.8337 5.735𝑒−06 7.031𝑒−11 
 𝑥3⇾𝑦 0.8881 0.9507 1.649𝑒−06 
(𝑥1, 𝑥2 , 𝑥3) ⇾ y <2.2𝑒−16 <2.2𝑒−16 <2.2𝑒−16 
(𝑥1, 𝑥2 , 𝑥3, 𝑥1𝑥2) ⇾ 𝑦 0.9257 0.6004 0.2813 
(𝑥1, 𝑥2 , 𝑥3, 𝑥1𝑥3) ⇾ 𝑦 <2.2𝑒−16 <2.2𝑒−16 <2.2𝑒−16 
(𝑥1, 𝑥2 , 𝑥3, 𝑥2𝑥3) ⇾ 𝑦 <2.2𝑒−16 <2.2𝑒−16 <4.441𝑒−16 

(17) 

Table 2. Result of non-linearity tes 

 

Figure 1 Structure of  non-linear SEM  

With interaction effect 
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4    Concluding Remarks 

This study show that Lagrange Multiplier Test could be performed in non-linear 

SEM. The linearity test accomplish both in partial and simoultan.   

Data with different multicolinearity will obtain the different analysis process in 

combination of quadratic elements and interaction elements. The data without 

multicolinerity, show that the elements of quadratic and interaction could be investigated 

from the significant value. The data with mulcticolinearity about 0.5 need more analysis 

in to determine the elements of the model. The data with high multicolinearity could not 

be examined with significant level. It means the data with high multicolinearity need 

more different analysis.  
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