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Abstract—Unlike it counterpart in parametric regression 

modeling, the development of nonparametric regression for count 

response are moving slowly. In this research we developed a new 

nonparametric regression approach for modeling count response 

using local polynomial smoothing. By assuming generalized 

Poisson distribution for count response, this model should robust 

for over dispersion problem that often occurred in count data 

modeling. Using maximum likelihood method for finding the 

estimator, we called it as local (maximum) likelihood estimator. In 

this paper we construct a confidence band of the unknown 

regression function, which is difficult to build in nonparametric 

regression context. The construction of the confidence band needs 

estimated bias and variance of local likelihood estimator that we 

have been derived earlier. We conducted some simulation to show 

the behavior of the estimator as well as the confidence band.  

 
Index Terms—generalized Poisson distribution, local 

polynomial smoothing, local likelihood, nonparametric regression, 

confidence band 

I. INTRODUCTION 

n the context of parametric regression analysis, Poisson 

regression is a standard and baseline model for describing the 

relationship between count response with some covariates. 

Following its name,  count response is assumed to follow the 

Poisson distribution which have restricted properties called 

equi-dispersion (i.e. mean should be equal to variance). This 

situation is hard to fulfill by observational data, and often the 

opposite situation where the observed variance exceeds the 

observed mean, called over-dispersion, is occurred. Fitting 

such data using Poisson regression model will seriously under 

estimated the variance and can lead to misleading conclusion in  

the inference [1].  As an alternative, there are others model 

such as: Negative Binomial regression model [2], Poisson Log 

Normal (PLN) model  and Poisson Inverse Gaussian (PIG) 

model [3]  and also Generalized Poisson regression model [4]. 

The last model is preferred because not only more general than 

Poisson regression (i.e. in special case it reduces to Poisson 

Regression), but it is simpler comparing to others  

In many cases, the relationship between response and 

covariates cannot describe by simply fitting some parametric 
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function such as linear, exponential or polynomial function.   In 

such case, nonparametric regression seems to be a reliable and 

reasonable choice. The aim of nonparametric regression is to 

minimize the assumption about regression function and let the 

data seeking for the function itself [hardle]. In nonparametric 

regression, scatter plot smoothing is the simplest method to 

estimate regression function. There are several approaches for 

determined the regression function, such as kernel, spine and 

local polynomial technique. These techniques known as local 

fitting methods because the estimation of regression function is 

done locally around some interval of points.  

Unlike it counterpart in parametric regression model, the 

development of nonparametric regression for count response 

with local fitting is moving slowly. There is not much research 

in this area, except [5], [6]. Local likelihood is a concept 

introduced by [7] and developed more intensively by [8]. This 

method extends the nonparametric regression analysis to 

maximum likelihood based regression model which also known 

as likelihood-based smoother. In this model, the mean of 

response variables are assumed depends on covariates with 

some nonlinear link function. Although, there are no presumed 

function for the regression curve itself.  

In this research we develop a nonparametric regression model 

for count response using local polynomial approach for the 

estimation of regression function. The count response is 

assumed to have generalized Poisson distribution.. We  called 

the estimator as local likelihood estimator because it is 

determined by local maximum likelihood method. Based on 

Taylor development of degree p and considering the 

generalized Poisson regression locally, in a neighborhood of 

some points of interest of the covariate, we also present the 

bias, the variance and the confidence band of  the regression 

function. We also present some simulation result to show the 

behavior of the local likelihood estimator as well as the 

confidence band of the regression function.  

 

 

II. LOCAL LIKELIHOOD ESTIMATOR 

 

Let Y be the response variable, which is a count, and x is a 

predictor variables. The distribution of Yi  (i=1,2,…,n) at given 

xi is following the generalized Poisson distribution, with the 

probability density function given by: 
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The parameter  plays as dispersion parameter. When , 

it will reduce to Poisson probability density. When  this 

model is under dispersed, and when  it will over disperse 

relative to Poisson distribution respectively [9]. In the local 

generalized Poisson regression model, instead of considering 

some specified regression function, the dependence of mean 

response with a covariate is describe by a smooth 

nonparametric regression function s: 

 exp( ( ))
i i

s x   (2) 

Assume that the function s has a  continuous 

derivative at the point . For data points   in a 

neighborhood of  or , with h is a 

bandwidth, we approximate via a Taylor expansion by a 

polynomial of degree p: 
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For data points  in a neighborhood of , the 

contribution to the log likelihood function is  weighted by some 

kernel function . By assuming generalized 

Poisson distribution for response variable  , these 

considerations yield the conditional local kernel weighted log-

likelihood: 
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where    and  is a Kernel 

weight. The choice of the kernel function is not a crucial 

issues, because the result is almost similar for any kind of 

kernel function including Epachnecnikov, Gaussian or Boxcar 

Kernels [10]. The estimator for regression function, is the 

solution of  (p+2) equation :  
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The solution of the system which is called local (maximum) 

likelihood estimator can be solved by iterative procedure such 

as Newton Raphson Methods. The log-likelihood function 

above  depends on two quantities, the smoothing parameter (h) 

and the order of polynomial (p). The model complexity is 

effectively controlled by the bandwidth h. As h increases from 

0 to +∞, the model runs from the most complex model 

(interpolation) to the simplest model and [10] stated that a too 

large bandwidth under parameterizes the regression function 

causing a large modeling bias, while too small bandwidth  over 

parameterizes the unknown function and result in noisy 

estimates. Ideal or optimal model is lying between the two 

models, which can be obtained by different criteria’s, one such 

criteria is cross validation (CV)  [11].   

 

Bias and Variance of the Estimator 

The estimator β̂ is biased because there is an approximation 

error in Taylor expansion (3). By considering a further 

expansion with (p+a) degree for approximate s(x), the 

estimated bias for   local likelihood estimator is given as in [12] 
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where ' *

, 0( , )p h xL β and '' *

, 0( , )p h xL β are the gradient vector and 

Hessian matrix of the local likelihood given by 
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For example, if we set  p=1 and a=2, then (8) can be expressed 
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where 0 1
ˆ ˆ ˆ, , , p   and ̂ is the solution of (6),(7) and 

îr  is 

the solution of (9).  

On the other hands the estimated variance of the estimator can 

be computed by 
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And for p=1 and a=2, the estimated variance is 
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with  ''

1, 0
ˆ( , )h xL β is Hessian matrix evaluated at β̂ . 

 

Confidence Band of Regression Function 

 

The confidence interval is an important tool for evaluating he 

estimator precision. But in nonparametric regression context,  

constructing such confidence interval is difficult because of 

non-negligible bias. However with our estimated bias and 

variance defined previously, we can construct a confidence 

interval or confidence band for regression function. Because 

the estimated bias and variance involves of higher order 

derivative curve, whose estimation can be unstable, they need 

to be averaged  to prevent from abrupt change [8].  So define   
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Under some regularity condition [13], the asymptotic 

distribution of the local likelihood estimator ˆ
j at a point  x=x0 
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So by invoking asymptotic normality the point wise confidence 

interval with (1 ) coverage probability 
j falls in random 

interval 
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From (4) we have 
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js x j j p  , so equivalently 

the confidence band for  the regression function  
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However according to [8], the  coverage probability  of  (17) 

or (18) can converge slowly to the nominal level (1 ) . There 

are two reason for this. One is that the number of data point 

used to estimate the regression function at a particular point 

can be much smaller than n and the other is that the bias can 

possibly be non-negligible. It will show in our simulation next. 

III. SIMULATION RESULT 

We conducted some simulation with some purposes. First is 

to show the behaviour of the local likelihood estimator as the 

bandwidth parameter h and polynomial degree p are increased. 

Second the behaviour of confidence band of regression 

function before and after averaging process. And finnaly to 

show the coverage probability of the confidence band at 

nominal level 0.95. For that, we use sample of size n=100, 200 

and 500. We generate x from Uniform  distribution on [-1,1]. 

And from each xi we generate the count response from 

generalized Poisson distribution with 3 different regression 

function 

 

 

We also use Epanechnikov kernel for weight and the dispersion 

parameter is set to 0.2. Fig.(1) shows the behavior of the 

estimator when we increased the bandwidth parameter from 

h=0.005 to h=0.5 for regression function s1(x).  

 
Fig 1. Estimated regression function (black) with h=0.005, h=0.1, h=0.2 and 

h=0.5 and the true regression function (red)  

 

As we can see the estimated curve runs from the complex 

model (interpolation) to more simplest model. The ideal 

bandwidth or  ideal model can be select by considering the 

value of CV which is minimum. The influence of  the 

polynomial degree p can be seen in Fig. 2 as we use s3(x) for 

true regression function.  

 

 
Fig 2. Estimated regression function with p=0  (red), p=1 (green), p=2 (blue)  

and the true regression function (black) 

  

 

 

As we can see that the higher the degree of polynomial (p=2) 

then the estimator can reaches peak or valleys of the data 

better than p=0 or p=1, and can approximate the true 

regression function nicely.  
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Fig. 3 The local likelihood estimator (black), 95% confidence band of true 

regression function (red)  and the true regression function (blue) 

 

 Figure 3 is an example of 95% confidence band for true 

regression function with coverage probability 0.91. This 

coverage probability means that 91% of  points in true 

regression function are included in the confidence band. The 

behavior of this coverage probability is  that the estimator can 

reach  

IV.  CONCLUSION 

A new approach of nonparametric regression for count 

response has been developed  using local polynomial technique. 

We also derived  estimated bias and variance of the estimator 

and constructing a confidence band for the unknown regression 

function. Simulation result shows that the performance of the 

estimator depends on the choice of bandwidth parameter h and 

polynomial degrees p. The confidence band of the  regression 

function shows coverage probability near the nominal level 

0.95 as expected 
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