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SUMMARY. Trend tests for monotone trend or umbrella trend (monotone upward changing to monotone 
downward or vise versa) in count data are proposed when the data exhibit extra-Poisson variability. The 
proposed tests, which are called the GS1 test and the GS2 test, are constructed by applying an orthonormal 
score vector to a generalized score test under an rth-order log-linear model. These tests are compared by 
simulation with the Cochran-Armitage test and the quasi-likelihood test of Piegorsch and Bailer (1997, 
Statistics for Environmental Biology and Toxicology). It is shown that the Cochran-Armitage test should 
not be used under the existence of extra-Poisson variability; that, for detecting monotone trend, the GS1 
test is superior to the others; and that the GS2 test has high power to detect an umbrella response. 
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1. Introduction 
Environmental data often exhibit extra-Poisson variability. 
For example, Table 1 summarizes data from a study of toxic 

reproductive response in the aquatic organism Ceriodaphnia 
dubia to the herbicide nitrofen reported in Bailer and Oris 

(1993). Offspring counts from exposed females are used as a 
measure of reproductive stress. The table shows that the es- 
timated variances are substantially larger than the estimated 
means at the two highest exposure levels, an indication of 
extra-Poisson variability. A classical approach to the prob- 
lem is to treat the Poisson means as latent variables that are 

sampled from a gamma distribution (Margolin, Kaplan, and 

Zeiger, 1981). There are various other approaches, such as 

using the mean and variance structure implied by the mixed 
Poisson model (Williams, 1982; Breslow, 1984, 1990). Breslow 

(1990) developed two versions of the Wald and score tests- 
one calculated from the assumed mean and variance struc- 
ture and other using an empirical covariance matrix. Boos 

(1992) generalized the latter by introducing the generalized 
score test. Piegorsch and Bailer (1997) developed a test us- 

ing the empirical variance, which is called the QL test in this 
article because it was motivated from a quasi-likelihood per- 
spective. Compared with the test that uses only the mean 
and variance structure, the test that uses the empirical vari- 
ance has closed form, is particularly simple to compute, and 
remains valid even when the mean and variance structure is 
incorrect. 

In addition, environmental response data sometimes ex- 
hibit an umbrella trend, such as an upward trend with a 
downturn at high doses or vise versa. For example, Table 2 

displays mutagenic response data from a Salmonella assay of 
the chemical Acid Red 114 given in Simpson and Margolin 

(1986). Six dose levels are used and each dose is replicated 
three times. The mean responses show that the dose-response 
in each replicate increases over low doses but then has a down- 
turn in higher doses. Simpson and Margolin (1986) developed 
a Jonckheere-Terpstra-type recursive test sensitive to that 
alternative. This issue is also discussed under umbrella alter- 
natives (Neuhauser et al., 2000). 

In this article, we develop trend tests for count data with 
extra-Poisson variability for data such as given in Tables 1 
and 2. The proposed tests are constructed by applying an 
orthonormal dose vector to the generalized score test of Boos 

(1992) under an rth order log-linear model. When r = 1, the 
test, which is called the GS1 test, is similar to the QL test, but 
it is shown that the GS1 test is more faithful to the nominal 
test level than the QL test. When r = 2, it is indicated by sim- 

Table 1 

Offspring counts for C. dubia exposed to nitrofena 

Dose 
(/g/liter) Number of offspring Mean Variance 

Control 27 32 34 33 36 
34 33 30 24 31 31.4 12.93 

80 33 33 35 33 36 
26 27 31 32 29 31.5 10.72 

160 29 29 23 27 30 
31 30 26 29 29 28.3 5.57 

235 23 21 7 12 27 
16 13 15 21 17 17.2 34.84 

310 6 6 7 0 15 
5 6 4 6 5 6.0 13.78 

a Data from Piegorsch and Bailer (1997, p. 220). 
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Table 2 
Numbers of revertant colonies for Acid Red 114, TA98a 

Replicate 1 Replicate 2 Replicate 3 

Dose (ppm) 1 2 3 4 5 6 7 8 9 

0 22 23 35 19 17 16 23 22 14 
100 60 59 54 15 25 24 27 23 21 
333 98 78 50 26 17 31 28 37 35 

1000 60 82 59 39 44 30 41 37 43 
3333 22 44 33 33 26 23 28 21 30 

10,000 23 21 25 10 8 - 16 19 13 
a Data from Simpson and Margolin (1986). 

ulation that the proposed test has higher power in detecting 
an umbrella response than the GS1 test. 

2. Trend Tests 
Consider a dose-response experiment with dose levels dl, d2, 
..., dk (d < d2 < ... < dk). Suppose that mi independent 
counts Yij are observed, with mean rate of response /Ii at di, 
i = 1,2,..., k. The object of this article is to test the hy- 
pothesis /1l = /12 = . = /Pk against a monotone trend or 
umbrella trend in /'s. We formulate this problem by intro- 
ducing a score vector as = (as1, as2, .. -, ask)', to be defined 

below, and by representing the ,i's as 

r 

logui = Psasi, (1) 
s=O 

where r is an integer (r < k) and aol = ao2 =.. = aok. 
Inclusion of arbitrary covariates in this formula is straightfor- 
ward, but we consider only the factor directly related to dose 
since our goal is to derive tests for trend. 

Now we introduce orthonormal score vectors. Let a dot in 
a subscript denote the summation over that subscript, e.g., 
m. = Si mi, Yi. Ej Yij. Define cl = (cl,c2 ...,ck)', where 

i =di - d and d = Ei dimi/m., so that Ei cimi = 0. Also 
define cs = (csl,cs2,... csk)' where c,s = cS (sth power 
of Ci ) for s = 1,2,...,r and co = (1,1,...,1)'. Define 
the inner product of two vectors as (a, b) = i aibimi and 
Ila(I2 = (a, a). Let ao, al,..., ar be orthonormal vectors ob- 
tained by applying the Gram-Schimdt orthonormalization to 
these vectors, i.e., ao = co/Ilcoll, ds = cs- Si- (cs,ah)ah, 
as = ds*/Jds|*. Then (as,al) = 1 if s = I and is zero oth- 
erwise and ||as|| = 1 for all s = 0,1,..., r. We call as the 
orthonormal score vector. 

Let 3(2) = (P1, .., /r)'. Using the orthonormal score vec- 
tors, it is shown in the Appendix that the generalized score 
test (Boos, 1992) for testing Ho: /(2) = 0 against H: f3(2) 7 0 

is given by GSr = S2y ) where S(2) = (i a1iY., 

, Ei ariYi.)', DY(22) = (i Ej (Yj - Y)2atiaui)rxr, Yi. 

lj1 Yi, = =1 Yi./m., and m.= E mi . It may be 
shown that GSr follows a chi-square distribution with r d.f. 
under Ho asymptotically when mi - oo, i = 1, 2,..., k. 

Putting d = Ek dimi/m., when r = 1, the GSr is writ- 
ten as 

GS1 = (E (di= - d)Y)i. 

i (di - d)2 E 1 (ij - )2 1=j 

Table 3 
Trend patterns of mean response from five dose 
groups used in generating data for simulation 

No. p1 /2 /i3 /4 /5 Pattern 

1 2 2 2 2 2 Uniform 
2 2.0 2.3 2.9 4.0 6.0 Monotone 
3 2.0 3.8 5.5 6.0 5.0 Umbrella 

We call the test based on this statistic the GS1 test. The GS1 
test is identical to the special case of the trend test for clus- 
tered binary data discussed in Boos (1992), Carr and Gorelick 
(1995), and Lefkopoulou, Rotnitzky, and Ryan (1996) when 
there is only one subject in each cluster. Note that the nu- 
merator of the GS1 is equivalent to that of the QL test by 
Piegorsch and Bailer (1997). Their empirical variance estima- 
tor is S=l1 (di - d)2 m (Yi - )2 

When r = 2, the GSr is written as 

GS2= ( aliYz., Ea2iYi.) 
ll v12 

i i ai i V21 V22 

X t(ZialiYi-' 
Ei a2i Yi J 

where vsi = Si asiali Ej (Yij - y)2. We call the test based on 
this statistic the GS2 test. It will be shown below by simula- 
tion that the GS2 test has high power in detecting umbrella 
trends. The GSr test assumes no specific distribution to rep- 
resent extra-Poisson variability. In the next section, however, 
its behavior is examined under negative binomial distribution. 
Specifically, assume that {Yi}j=1,...l,m are independent and 

r y+-- / 

(3t(l + fyti )+ i (1 + qw i)l/h' 

giving E(Yij) = /i and var(Yij) = pi + p/2, where T > 0 is 
the dispersion parameter. 

3. Numerical Evaluation 
The response patterns of numbers 1, 2, and 3 in Table 3 are re- 
ferred to as the uniform, monotone, and umbrella patterns. In 
addition to the GS1, QL, and GS2, the Cochran and Armitage 
test (CA test) (Cochran, 1954; Armitage, 1955) is examined 
for each response pattern, with means shown in Table 3. The 
dose levels are set at 1, 2, 3, 4, and 5, and the nominal test 
level is set at 0.05. Ten thousand data are generated from 
each distribution. The number of observations (mi) per dose 
group is the same for all dose groups, and its value is set at 
3,4,...,20. 

Empirical Type I errors are shown in Figure 1 for the 
uniform response. Panel (a) exhibits the errors for the Pois- 
son distribution with no extra-Poisson variability. The panel 
shows that the Type I errors of the tests are quite close to 
the nominal level except for the QL test at small m. Pan- 
els (b), (c), and (d) exhibit the errors when the underlying 
distribution is the negative binomial with qp = 0.1, 0.2, and 
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(a) Poisson Distribution 
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Figure 1. Empirical type I error for the uniform response. 

0.5, respectively. The panels show that the Type I errors of the 
CA test deviate substantially from the nominal level, confirm- 
ing the previous findings (Margolin et al., 1981; Boos, 1993; 
Carr and Gorelick, 1965), and that the Type I errors of the 
QL test are inflated, in particular for small m. Note that the 
QL test is an asymptotic test when m -- oo. In contrast, the 
GS1 and GS2 tests perform reasonably well by keeping the 
Type I error close to 0.05, even for small m. 

Next we examine the power of the tests. Empirical powers 
of the CA, GS1, QL, and GS2 tests are considered for the 
Poisson distribution, but the CA test is omitted from consid- 

eration of the negative binomial distribution because that test 
violates the nominal size substantially. The power of the QL 
test is included throughout but is omitted in the comparison 
below when m is small for the same reason as the CA test. 
Figure 2 displays the power of the tests for the monotone re- 
sponse. Panel (a), for the Poisson, shows that the power of the 
CA test is the highest, as expected. Panels (b), (c), and (d), 
for the negative binomials distributions with the same disper- 
sion parameters as in Figure 1, show that the GS1 test has 
higher power than the GS2 test throughout, but the power of 
the GS1, QL, and GS2 tests begin to converge as m increases. 

(a) Poisson Distrbution 
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Figure 2. Empirical power for the increasing monotone response. 
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(a) Poisson Distribution 
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Figure 3. Empirical power for the umbrella response. 

Figure 3 shows the power of the tests for the umbrella re- 

sponse. Again, panel (a) is for the Poisson distribution with- 
out the extra-Poisson variability. The panel shows that the 
CA test is still superior to the others and that the powers of 
the all four tests converge when m is large. Panels (b), (c), 
and (d) are for the same negative binomial distributions as 
the previous figures. The panels show that, when m is small, 
the GS1 test has a little higher power than the GS2 test, but 
otherwise, the power of the GS2 test is the highest and the 
power of the GS2 test decreases slightly as the value of the 
dispersion parameter increases. 

4. Applications 
4.1 C. dubia Data 
The values of CA, GS1, QL, and GS2 computed from Table 
1 are 182.655, 25.306, 304.252, and 25.342, respectively. Since 
the response is monotone, the results of the simulation in 
the previous section suggest that the GS1 test is preferable. 
The GS1 test indicates a significant result with p-value less 
than 0.01, showing nitrofen induces strongly a significant 
downward trend in C. dubia data. 

4.2 Salmonella Data 
The results of the Fisher test (Fisher, 1950) for overdispersion 
are given in the second column of Table 4. They indicate the 
presence of overdispersion in replicate 1 and the total data. 
Columns 3, 4, 5, and 6 in Table 4 list the p-values of the 
CA, GS1, QL, and GS2 tests. Since m = 3 in each replicate, 
the QL test is only applied to the total data for the reason 
given above. Also, for the same reason, the CA test is not 
applied to the data in replicates 1 and 3. Recall that the dose- 
response in each replicate increases over low doses but then 
has a down turn in higher doses. The previous simulations 
indicate that the GS2 test is preferable in this case. The table 
shows that the CA, GS1, and QL tests all fail to detect the 
umbrella response, whereas it is detected by the GS2 test. 

The Jonckheere-Terpstra-type recursive test (Simpson and 

Margolin, 1986) provides upper bounds of the p-values; those 

upper bounds for replicates 1, 2, and 3, respectively, are 0.016, 
0.015, and 0.01. 

5. Discussion 

The GS1 and GS2 tests are proposed for testing a trend under 
extra-Poisson variability, and their behaviors are compared 
with the CA and QL tests. It is shown by simulation (i) that, if 
extra-Poisson variability exists, the CA test looses its validity 
but the GS1 test and GS2 test do not; (ii) that the GS1 test 
is superior to the GS2 test in detecting monotone response 
and the GS2 test is superior to the GS1 test in detecting an 
umbrella response unless m is very small; and (iii) that the 

QL test overstates the Type I errors and should not be used 
unless m is large. Note that the denominator of QL is smaller 
than that of GS1 and thus QL is always larger than GS1; in 

particular, QL=oo when m=1. This would account for the 
inflation of the Type I error of the QL test. The GSr test is 
also an asymptotic test for large m, but it employs pooled 
empirical variance and is more faithful to the Type I errors 
than the QL test even when m is small. 

Table 4 
P-value for overdispersion test and trend tests 

Trend test Fisher test for 
Data overdispersion CA GS1 QL GS2 

Replicate 1 0.001 0.882 - 0.003 
Replicate 2 0.363 0.125 0.399 - 0.048 
Replicate 3 0.794 0.306 0.534 0.019 

Total data 0.000 0.442 0.120 0.001 
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RESUME 

Des tests de tendances permettant de tester la monotonie de 
tendances ou leur forme en ombrelle (passant d'une monotonie 
croissante a une monotonie decroissante) dans des donnees de 
denombrement sont proposes quand les donnees montrent une 
variabilite extra-Poissonnienne. Les tests proposes, que l'on 
appelle test GS1 et test GS2, sont construits en appliquant 
un vecteur de scores orthonormal a un test de scores generalise 
sous un modele log-lineaire de r-eme ordre. Ces tests sont com- 
pares par simulation au test de Cochran-Armitage ainsi qu'au 
test de quasi-vraisemblance de Piegorsch et Bailer (1997). 
On montre que le test de Cochran-Armitage ne devrait pas 
6tre utilise en presence d'une variabilite extra-Poissonienne; 
que pour detecter une tendance monotone le test GS1 est 
superieur aux autres; et que le test GS2 a une grande puis- 
sance pour detecter les tendances en ombrelle. 
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APPENDIX 

Let t(f) be the log-likelihood function obtained by assuming 
the Poisson distribution for the data incorporated with the 
log-linear model (1). Put 

() - ( 0/t (r+l)xl 

(o2(3)) 1)x(r+1) 
Iy(P) = (-0~t~ (~(+3) x 

Dy(l~) = 
a 

)O/t OU ] (r+1) x (r+l) 

and let S(Y)' = (S'1),S(2)), where S(1) is 1 x 1 and S(2) is 
r x r. The matrices above are partitioned accordingly, e.g., 
IY(11) is 1 x 1, IY(12) is 1 x r, and so on. Evaluating those 
matrices at 3 = /3, where p is the restricted maximum likeli- 
hood estimator of 3 under H*: 3(2) = 0, Boos (1992) defined 
the generalized score test for testing Ho against H: /3(2) = 0 
as TGS = S2)V(S(2)) S(2), where 

V(S(2)) 
= 

Dy(22) 
- Y (21)() ( 

-Dy(21)IY(ll)Iy(21) 

+ (21)y()DY()y(ll) (2) 

Using orthonormal properties of the score vectors, we have 

iY(21) = Iy(12) = 0 and the variance estimate V(S(2)) takes 

the simple form of Dy(22) given in the text. 
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