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ABSTRACT 

Mortality data by age are known have a non linier pattern likes a bath-tub shape. There 
are  some parametric regression  models developed to reveals the relationship between 
age and mortality rates. However using such models needs more efforts including a lots of 
parameter needed in the models and also numerical instabilities. To overcome this 
difficulties, recently, researchers give much attention to nonparametric regression models. 
Instead of assuming some restricted regression function, this approach allows for more 
flexible and robust of smooth function. There are several nonparametric model have been 
studied intensively, including Kernel and  Smoothing Spline Regression. In this paper we 
developed a new approach by using  local polynomial modeling. This model is a likelihood 
based model assuming Generalized Poisson distribution for the number of deaths at 
specific age. Using Generalized Poisson distribution instead of Poisson distribution makes 
this model robust  for over or under dispersion problems. We apply this model to 
Indonesians mortality data based on the result from  Population Census 2010, and found 
that this model performs well  
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1. INTRODUCTION 

Modeling mortality rates is a  fundamental issues in epidemiology and population studies generally, 

and for government, the insurance and pensions industry in particular. For the government the 

projection of mortality rates are useful for development planning, such as building schools, provides 

more hospitals, health care program, pension provision for employee etc.  For the insurance and 

pensions industry future mortality rates are needed to determine the pricing and reserving of 

annuities.  

Mortality data by ages are well known shows non linear pattern likes a bath-tub shape. There are 

numbers of approaches to the problem. In the earlier researcher developed some methods based on 

the forecasting of parameters in some parametric model. For example, Age-Period-Cohort (APC) 

models in Currie et al. (2004) are a well established method of smoothing mortality rates. Heligman 
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and Pollard (1980) developed 8 parameters non linear logistic regression representing relationship 

between age and mortality rates. Lee and Carter (1992) introduced a simple bilinear model of 

mortality in which the time dependent component of mortality is reduced to a single index which is 

then forecast using time series methods. The model is fitted by ordinary least squares (OLS) with the 

observed log mortality rates as dependent variable. Brouhns et al. (2002) improved on the OLS 

approach by modeling the number of deaths directly by a Poisson distribution and using maximum 

likelihood for parameter estimation. There are others modification and extensions version of the Lee-

Carter methods, some of them are Lee and Miller (2001),  Booth et al. (2006), De Jong and Tickle 

(2006) and Hyndman and Ullah (2007). These models have been used in the past for a wide range of 

mortality data resulting in satisfactory representations of a variety of pattern. But, these approaches 

make strong assumptions about the functional form of the mortality surface.  Using parametric 

regression for such a non linier relationships needs more efforts including a lots of parameter needed 

in the models. Estimation of the parameters is problematic due to over parameterization and also 

numerical instabilities. 

To overcome the problems, recently researchers pay much attention to nonparametric regression. 

Instead of assuming some restricted regression function, this approach allows for more flexible and 

robust of smooth function. Currie et al. (2004) used a penalized generalized linear model (PGLM) with 

Poisson errors and show how to construct regression and penalty matrices appropriate for two 

dimensional modeling. They illustrated the methods with two data sets provided by the Continuous 

Mortality Investigation Bureau (CMIB), a central body for the collection and processing of UK 

insurance, and found that the model performs nicely. Shyamalkumar (2006) is also using smoothing 

spline Poisson regression model with penalized likelihood estimation method for the analysis of 

mortality data. The model was applied to estimate  the mortality rates from the Female, English and 

Welsh Mortality data (1988-1992). In the other hands Peristera and Kostaki (2005) proposed using 

Kernel Regression for modeling mortality rates by age. They provided a critical presentation and an 

evaluation of the various kernel regression estimators such as Nadaraya-Watson estimate, Gasser-

Muller estimate and kernel weighted local linear estimates for graduating age specific mortality data. 

For that, they applied the alternative kernel estimators to empirical mortality data sets of different 

national populations and different time periods. These data are provided by Human Mortality 

Database (HMD).  

The methods presented above, can only estimate  the smooth regression function itself without the 

capability to infer the estimator. In this paper we developed a new approach for analyzing mortality  

data. We used local polynomial modeling by Fan and Gijbels (1997), which extends nonparametric 

regression to maximum likelihood-based regression models. In this research we present an estimator 

for regression function namely a local maximum likelihood estimator based on generalized Poisson 

distribution. Using generalized Poisson locally instead of Poisson distribution is for avoiding over or 

under dispersion problems that often occurred in count data modeling. This model has the advantage 

that we can construct a confidence interval for the regression function which  is hard to do by other  

nonparametric methods.   
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2. MATERIAL AND METHODS 

 

In this chapter we discuss about the theoretical model for Generalized Poisson Regression model and 

the data used for implementation the model. 

 
2.1. Generalized Poisson Regression Model 

 
Generalized Poisson regression is a generalization of Poisson regression model. The last model is a 

well known statistical tools that can reveals the relationship between count response with some 

covariates. However, the Poisson regression model assumes that the mean and variance of the 

response  variable is equal, whereas in practice, the data may display over dispersion or extra-

Poisson variation, i.e., a situation where the variance exceeds the mean, or the opposite situation 

called under dispersion. Inappropriate imposition of the Poisson may underestimate the standard 

errors and overstate the significance of the regression parameters, and consequently, giving 

misleading inference about the regression parameters. 

In order to overcome this problem  there is generalized Poisson regression models (Famoye et al, 

2004) that take into account over and under dispersion which is often appear in count data. Suppose 

we have pairly observational data  ���� ���� 	 
 ����
 � � which is distributed independently with x is a 

vector of covariates. The count response Yi is assuming follows the generalized Poisson distribution, 

with the probability density function given by: 

���� �� �� 
 � �
� � ���� �� � ������
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with #��� 
 � and $��� 
 ��� � ���%. The parameter � plays as dispersion parameter. When � 
 ", 

it will reduce to Poisson probability density. When � & " this model is underdispersed, and when 

� ' " it will overdisperse relative to Poisson distribution respectively (Famoye,2000). In generalized 

Poisson regression, the mean of the response variable!!#��(�� 
 ����!are assumed depends on some 

covariates through a link function or regression function 

����� 
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where .!is a parameter vector. The maximum likelihood estimates of  .!!and � is obtained by 

maximized the  logarithmic of  likelihood function:  
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The maximum likelihood estimator for vector parameter is found to be a solution of maximum 

likelihood equation: 
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Since the equations are nonlinear in parameters, the solutions can be obtained by using some 

iterative procedure such as Newton Raphson method.. 

 
2.2. Local Linear Estimator for Generalized Poisson Regression Model 

 
The parametric regression approach like generalized Poisson regression model are assumed that the 

regression function has some prespecified functional form, As an alternative one could try to estimate 

regression function nonparametrically without refer  to a specified form, which called nonparametric 

regression. The objective of using nonparametric regression model is to minimize the assumption of 

regression function and let the data found the form of the function itself (Hardle, 1990). In 

nonparametric regression context, the simplest way to obtain the estimate of regression function is 

scatter plot smoothing, and one of them  is  by applying polynomial regression locally which called 

local polynomial technique (Fan and Gijbels,1997).   

Local polynomial technique can be illustrated simple as: for a given value of �, we applied polynomial 

regression locally in the neighborhood of �  resulting a separate line in a window around each * value. 

The value of the estimated line at x is the estimate of the regression function at * . The size of the 

data in the local neighborhood is called bandwidth which plays as smoothing parameter in the model.  

The local polynomial technique has the advantages comparing to other smoothing techniques, not 

only that it is mathematically intuitive and simple but also the capability of making inference for the 

estimator of regression function by constructing a confidence interval.  

Tibshirani and Hastie (1987) extend the idea of local fitting in nonparametric regression analysis to the 

class of generalized linear model,  also known as maximum likelihood-based regression models. They 

called  this approach as local likelihood technique. Fan et al. (1998) present a framework for 

assessing the bias and the variance of the local likelihood estimator as well as a bandwidth selection 

procedure and also applying this approach to logistic regression model and Cox Regression Model. 

Santos and Neves (2008) adopted this method to perform local Poisson regression model. 

In the local generalized Poisson regression model, instead of considering some specified regression 

function, the dependence of mean response with a covariate is describe by a smooth nonparametric 

regression function s: 

#���(�� 
 ����� 
 )*+AF����B 
Assume that the function s has a �� � ��GH continuous derivative at the point �I. For data points ��  in 

a neighborhood of �I! or �� J ��I � K� �I � K�!!, with h is a bandwidth, we approximate !F����!via a 

Taylor expansion by a polynomial of degree p: 
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 �8>-
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For data points �T�� ��� in a neighborhood of �I, the contribution to the log likelihood function is  

weighted by some kernel function UH�V� 
 U�V K�WKR . By assuming generalized Poisson distribution for 

response variable �� , these considerations yield the conditional local kernel weighted log-likelihood: 

XM�-� �� K� �I� 
 1Y��/� � ������ � ������� � ��� � ��23�� � ���� � �� � �78� ������ � ������Z
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where   !����� 
 )*+=�8>-? and UH�V� 
 U�V K�WKR  is a Kernel weight. The choice of the kernel function 

is not a crucial issues, because the result is almost similar for any kind of kernel function including 

Epachnecnikov, Gaussian or Boxcar Kernels. 

The kernel-weighted maximum likelihood estimator for regression function, is the solution of  (p+2) 

equation :  
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The solution of the system which is called local polynomial (maximum likelihood) estimator can be 

solved by iterative procedure such as Newton Raphson Methods. The log-likelihood function above  

depends on two quantities, the smoothing parameter (h) and the order of polynomial (p). The model 

complexity is effectively controlled by the bandwidth h. As h increases from 0 to +�, the model runs 

from the most complex model (interpolation) to the simplest model (polynomial model). Fan and 

Gijbels (1997) stated that a too large bandwidth under parameterizes the regression function causing 

a large modeling bias, while too small bandwidth  over parameterizes the unknown faction and result 

in noisy estimates. Ideal or optimal model is lying between the two models, which can be obtained by 

different criteria.  One of the criteria that are easy to interpret is Akaike’s Information Criterion (AIC), 

so we seek for a model that minimizes the AIC. Since the modeling bias is controlled by the 

bandwidth, the choice of order of polynomial is less crucial. Unlike traditional polynomial parametric 

regression, local polynomial model just requires a small degree of polynomial for a complex pattern of 

data. In the case when p=0, the technique is called local constant and when p=1,  it is known as local 

linear model. In this paper we will use local linear estimator for the application to mortality data.  

 
2.3. The Data 

 
There are commonly 3 methods of mortality data collection: population census, civil registration and 

households survey. Among these 3 methods, civil registration is the preferred ones, because the 

number and cause of deaths can be achieved directly. But, in the developing countries like Indonesia, 

the quality of data from civil registration is very poor and also incomplete. There is no willingness from 

the peoples, to report events like deaths or births to the civil registration office. United Nation (UN) 

reported that more than half the world population lives in countries in which civil registration provides 
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incomplete coverage of deaths and births, including Indonesia. In the absence of civil registration 

data, population censuses and households surveys are used to collect mortality data. The population 

census is a potentially rich source of mortality data. Like civil registration, it will provide complete data 

on all geographic areas, but it will also provide data for any persons live in the households. In the 

population census there is commonly a question about recent deaths in the households. Questions on 

recent household deaths have several important advantages. In the absence of complete and 

accurate death registration data, they are the only possible source of information on the age pattern of 

mortality. 

The mortality data used in this paper are from  Indonesians Population Census 2010 organized by 

BPS Statistics Indonesia. This census is the latest and largest population census held in Indonesia, 

covering the entire Indonesian’s territory of 33 provinces, 497 districts, and 7.000 sub district and 

about 75.000 villages. The 2010 Population Census has been designed to meet various data needs, 

including valuable input in monitoring the progress for achieving the Millennium Development Goals. 

One of the goals is to decrease the mortality rates and because of that reason  for the first time this 

census covering the mortality data resulting direct mortality data. For each households was asked 

whether there are “event of deaths” in the households in the past 12 months before enumeration time 

(around May 2010). If there are member of the household that died in the range of time, the age and 

sex of the deaths also recorded. This is also known as current mortality data.  The aggregation of 

number of deaths for the whole country, resulting number of death by age will be used  in this paper 

as the observational data. The number of deaths at specific age is a response variable, and the age 

itself is a covariate. Because number of deaths is come from the aggregation by hierarchical 

procedure  from households, villages, sub district, districts and provinces, it must be some intersubject 

variability in counting number of deaths. As a consequences,  we suspicious that the data exhibit over 

dispersion problem the one hand, we considered the classical method of least squares without 

variables selection and on the other hand, the stepwise selection method of variables is used. These 

methods were adopted, because they are among the most used methods, and are available in almost 

all statistical software. 

 

3. RESULTS 

The scatter plot of total number of deaths (in a logarithmic scale)  by age is given in figure 1. There 

are obviously two things that seen very attractive. First, is the pattern itself that is far from linier and 

also there are different slope in growths between some interval value of age. There are very high 

number of deaths at the young ages (between 0 and 1) also known as infant mortality, and decreased 

sharply until age of 12 or 13. Then it increased quite fast in the intervals of 13 to 20, but the growth is 

become more slowly increased after that. At the end, it will reach a high level in the interval above age 

of 70.  For such kind of different slope of growth, we will need some smooth and flexible function for 

describing this pattern rather than some restricted function in parametric regression model. The 

second thing that also found attractive,  is the systematic sharp jump in the ages  ending with 0 or 5, 

especially for elderly age . This is a well known data problem among demographers and applied 
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statistician, called “age heaping”. In case of mortality data, age heaping occurs when people do not 

remember exactly the time  when the deceased born and or death. For that case, they are unable to 

calculate the deceased’s age at death exactly and tend to round it up or down into the nearest age 

ending with 0 or 5.   

 

Figure 1: Plot of number of deaths by age from Indonesian Population Census 2010 

 

Age heaping phenomenon is a kind of misreporting data, and using this data for further analysis 

carelessly, can leads to biased conclusion. Camarda et al. (2008), using composite link models 

combined with smoothing spline technique and applying this model to Portuguese mortality data. They 

redistributed the number of deaths at preference ages to the neighboring ages using composition 

matrix. The concept of local regression in this paper can work for correction of age heaping in a 

similar way. Because the regression is running locally, in each region where age heaping is occurred, 

the kernel function will redistributed this value to the neighborhood with a symmetric weight 

automatically. 

We apply the local linier generalized Poisson model to the data, and the result with different value of 

bandwidth is given in Figure 2. As we can see, when the bandwidth parameter is small (h=1), the 

model is simply interpolate the data and as the bandwidth is increased (h=5 and h=10) we have a 

more smooth estimates. But when we set the bandwidth at high value (h=50), we got over smooth 

estimates and it is almost similar with running one linier regression model. So we have to look for best 

model, according to their AIC value. The AIC for different values of bandwidth are given by Figure 3, 

and  we found the optimum ones at h=5 with AIC equal to -756.2546 
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Figure 2:  Local Linear Generalized Poisson Estimates  for Indonesian Mortality data 

        with different value of bandwidth (a) h=1, (b) h=5, (c) h=10 and (d)h=50 

 

 

Figure 3: Plot of AIC value with different values of bandwidth 
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The plot of the model with optimum bandwidth is given in Figure 4. As we can see in the final model, 

the age heaping is vanished and  redistributed to the neighborhood ages.   

 

Figure 4: Local Linier Generalized Poisson estimates for Indonesians mortality data  

 

 

4. DISCUSSION AND CONCLUSION 
 

In this study, a new nonparametric regression method for count response was proposed by using 

local polynomial modeling.  In this research we present an estimator for regression function namely a 

local maximum likelihood estimator based on generalized Poisson distribution. Using generalized 

Poisson locally instead of Poisson distribution is for avoiding over or under dispersion problems that 

often occurred in count data modeling. The proposed model was applied to Indonesians mortality data 

from Population Census 2010. The pattern of mortality by age was obviously non linear and exhibits 

some age heaping problem. We found that the model works nicely for smoothing pattern of number of 

deaths by  age and also can handle the age heaping problems. As mention in the previous 

introduction, one of the advantage of local polynomial modeling is the capability of the construction of 

a confidence interval. So it is our interest in further study  to derive the confidence interval for this 

local generalized Poisson model. 
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