
Applying Layering Concept to the Software
Requirements Analysis and Architectural Design

Yunarso Anang1,2 and Yoshimichi Watanabe1

1 Interdisciplinary Graduate School of Medicine and Engineering,
University of Yamanashi

4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
{g14dma01, nabe}@yamanashi.ac.jp

2 Department of Computational Statistics, Institute of Statistics
Jl. Otto Iskandardinata No. 64C, Jakarta 13330, Indonesia

anang@stis.ac.id

Abstract. Considering software architecture concurrently and iteratively
with software requirements, has been illustrated as a way to increase pro-
ductivity and stakeholder satisfaction in the twin peaks model software
development process. Because this model exposed only the tip of the ice-
berg, and lacks of concrete definitions and techniques, an approach of
utilizing this model in the real world has been proposed by applying the
concept of the product development process based on Quality Function
Deployment. In this paper, we will go further of giving more detail about
how to define the requirements along with software architecture. In order
to provide a method to define a robust software architecture but to be
adaptable to the presence of changing requirements, we apply layering
concept to the software requirements analysis and architectural design.

Keywords: requirements analysis, architectural design, layer, volatility,
abstraction, twin peaks model, quality function deployment.

1 Introduction

A software development project typically starts with extracting some software
requirements from the stakeholders. After that, the developer team uses those
software requirements as the input for architectural design to define the archi-
tecture of the software system to be built. This process is typical of software
development based on the waterfall model.

In such development process, the software requirements have become a con-
straint in the architectural design process. In this process, rather than developing
from the scratch, most projects are adopting one of the well known and explicit
architectural patterns, or selecting a software architecture by reusing the already
trusted components providing the framework for the software application. How-
ever, since this framework also prescribe the capability such as the extensibility
of the application, if improperly selected in the architectural design, it might be
di�cult to fix in the latter process. The constraint of architectural design can

45

Proceedings of the 2nd Workshop on Continous Requirements Engineering (CRE’16) in conjunction with the 22nd International Conference on Requirements Engineering: Foundation for Software Quality (REFSQ’16), 2016, pp. 45–50. [Online]. Available: http://ceur-ws.org/Vol-1564/paper8.pdf�

also impede the changes in the software requirement itself, when the changes
cannot be implemented in the already selected architecture. As the result, the
stakeholder might not have enough satisfied with the final product.

Software requirements are the important elements to be considered first in
software development. Software architecture, which is defined based on software
requirements, is also the important thing to be thought in order to fulfill the
given requirements at the time the architectural design performed. Software ar-
chitecture also needs to have the flexibility to deal with future change of software
or user requirements. The twin peaks model has been proposed to emphasize that
developers should equally give status to the specification of requirements and ar-
chitectures [7]. Compared to Boehm’s spiral life cycle model [2], the twin peaks
model provides a finer-grain one, a life cycle that acknowledges the need to de-
velop software architectures that are stable, but still adaptable, in the presence
of changing requirements. However, though the concept is well explained, there
is no detail or concrete explanation of what and how to apply, and, at the time,
the software-development community has not yet recognized that such a model
represents acceptable practice.

Since the result of requirements analysis a↵ects the overall result of the fi-
nal product, and it is important to ensure customer will be satisfied with the
final product, we will further discuss the method of requirements analysis. In
our research, we propose the use of Quality Function Deployment (QFD) as a
method to clarify the voices of the customer, and define the product quality as
well as the business functions of the product based on them, and take them in
the whole development process of the product [6]. An approach of combining the
QFD based software requirements analysis with the twin peaks model has been
proposed [10]. The approach provides a concrete method of defining and deploy-
ing software requirements concurrently with software architecture’s components,
using the QFD’s well-known two-dimensional tables.

In this paper, in order to provide a more detail and concrete method in
establishing stable software architecture but to have a range of flexibility over
changing requirements, we apply the concept in layered architectural patterns
to the software requirements analysis and architectural design. The concept is
hereinafter referred to as the layering concept.

The rest of this paper is organized as follows. Section 2 presents the concept
in layered architectural pattern. Section 3 discusses how we apply the layering
concept in requirements analysis and architectural design. In the section, we also
show how we evaluate the approach using an example. Finally, we conclude this
paper in Section 4.

2 The Concept in Layered Architectural Patterns

Software architecture is a description of subsystems, components, and relation-
ships among them, required for building a software system. Software architec-
tural design is a process whose purpose is to provide a design for the software
that implements and can be verified against the requirements.

46

Among various numbers of software architectures, those that are found par-
ticularly useful for families of systems are often codified into architectural pat-
terns. From several architectural patterns already established [4], we chose the
layered architectural pattern, because its layering concept has the benefits to
separate functionalities into distinct layers, and it can support flexibility and
maintainability if it appropriately defined.

The layering concept helps to structure applications that can be decomposed
into groups of subtasks in which each group of subtasks is at a particular level
of abstraction. Layers are sorted vertically, where that having the lowest level of
abstraction is placed at the bottom, and that on the uppermost level of abstrac-
tion is placed on the top. The lower layer has less chance of modifying than those
above it. One of software architectural designs applying the layering concept is
the principal 3-layer architecture: presentation, domain, and data source [3], as
summarized in Fig. 1.

Presentation

Domain

Data Source Layer 1

Layer 2

Layer 3

Communication with the
backend services

Functionalities in the
business logic

Display of information,
capturing user input

Fig. 1. A diagram showing the principal 3-layer architecture.

The principal 3-layer architecture has a di↵erent level of abstraction in each
layer. Starting from the bottom, data source layer has the lowest level of ab-
straction. It means data source should have the smallest potential to change.
Changing in data source may have a big impact to the upper layers. In contrary,
changes in the application layer, such as changing the color of display or even
changing the user interface from desktop to web-based, do not propagate to the
lower levels. However, this layer may have a bigger chance of changing compared
to lower levels.

3 Applying Layering Concept to the Requirements
Analysis and Architectural Design

Software requirements analysis consists of activities including requirements elic-
itation, requirements analysis, requirements specification, validation, and man-
agement activities. The requirements analysis activity is the most important step
in the overall development process, as in this activity, the requirements will be
classified. The appropriateness of the classification will decide how the require-
ments would be handled in the architectural design. The software requirements
defined in this activity will influence how rigid or stable the software architecture
will be designed, and at the same time, that will, indirectly, decide how easy to

47

accommodate in the presence of changing requirements. We need a method of
classification which can give an input to the architectural design whose result is
adaptable to the future changing of requirements.

In the previous section, we have discussed how the layering concept bene-
fits to increase the extensibility of software development and the flexibility to
accommodate changes in requirements. We propose applying the same concept
in classifying requirements. We consider the volatility or chance of changing of
requirements to be the base of applying the layering concept. There are few re-
searches studying the volatility of software requirements such as in [5][8], but
mainly they only study the impact of requirements volatility or its statistics in
the development process.

It is stated that some requirements will change during the life cycle of the
software, and even during the development process itself. For example, in an
online new student admission application, requirements for functions to make
the registration online are likely to be less volatile than requirements to support
integration of the admission fee payment. The former reflects a fundamental fea-
ture in the admission application, while the latter may change as the payment
method may vary from manual payment to automatic payment via online bank-
ing application which may need a system integration with banking application.
It is useful if some estimate of the likelihood that a requirement will change
can be made. Flagging potentially volatile requirements can help the software
engineer to establish a design that is more tolerated of change.

Fig. 2 shows how we apply the layering concept to the requirements analysis
and architectural design. First, the requirements will be sorted based on their
degree of volatilities. The sorted requirements then will be used in architectural
design, which is in this case, they are mapped into the 3-layer architecture.

layered requirements layered architecture

higher layer
higher level of abstraction
higher degree of volatility
more chance of changing

less chance of changing
lower degree of volatility
lower level of abstraction
lower layer

architectural
design

pr
ese

nt
ati

on
do

ma
in

da
ta

so
ur

ce

Fig. 2. A process of architectural design from the layered requirements, producing a
layered architecture.

To illustrate the approach described above, we evaluate it using an exam-
ple. The example is taken from the paper introducing the requirements analysis
method using QFD [9]. The example is about the virtual software of web based
system which provides management of pictures taken while the user traveling.

48

We use the result of the method described in the paper as the input of our
proposed approach as shown in left side of table in Fig. 3.

User Authentication
Correct Layouts
Display Layouts
Delete Pictures
Log Out
Execute Image Processing
Arrange Pictures Automatically
Arrange Pictures Automatically
Select Templates Automatically

Do
m

ai
n

Display Search Result
Send Layout Information
Set Up Order
Select Surprise Pattern
Select Templates
Display thumbnails
Display Pictures List
Make Account
Arrange Pictures
Select Pictures
Display Selected Picture
Select Pictures
Set Search Condition
Edit Pictures

Pr
es

en
ta

tio
n

Register User Attribute
Register Payment Information
Register Address
Register Account Information
Register Pictures to DB
Set Payment
Set Address
Register Pictures

Da
ta

 S
ou

rc
e

Layers of Requirements
(obtained based on scores

calculated using quantification
method of type 3)D

at
a

So
ur

ce

D
om

ai
n

Pr
es
en
ta
tio
n

Ba
si

c
Fu

nc
tio

ns
Ad

di
tio

na
l F

un
ct

io
ns

Result of Requirements Analysis using QFD Architecture
Layer

Scene Functional Requirements

Manage
Pictures

Register Pictures Register Pictures ◎ △
Browse Pictures Display Pictures List △ ◎

Display Selected Picture ◎
Edit Pictures Edit Pictures △ ◎

Execute Image Processing ◎ ◯

Design Album
Layout

Select Pictures Display thumbnails △ ◎
Select Pictures ◎

Layout Manually Select Templates △ ◎
Arrange Pictures ◎

Layout Automatically Select Templates Automatically ◎ △
Arrange Pictures Automatically ◎ △

Display Layout Display Layouts ◯ ◎
Correct Layouts ◯ ◎

Surprise Function Select Surprise Pattern △ ◎
Arrange Pictures Automatically ◎ △

Order Printing

Set Up Order Set Up Order △ ◎
Register Payment
Information

Set Address ◎ △
Set Payment ◎ △

Order Send Layout Information △ ◎
Delete Pictures △ ◎

Manage
Pictures
Database

Register Pictures to DB Register Pictures to DB ◎ △
Search Pictures on DB Set Search Condition △ ◎

Display Search Result △ ◎
Delete Pictures from
DB

Select Pictures △ ◎
Delete Pictures △ ◎

Manage
Account

Register Users

Make Account ◎
Register Account Information ◎ △
Register Address ◎ △
Register Payment Information ◎ △
Register User Attribute ◎ △

User Authentication User Authentication △ ◎ ◯
Log Out ◎ ◯

Impact: ◎ High ◯ Moderate △ Low

Fig. 3. Layering requirements derived from requirements analysis using QFD.

In order to arrange the requirements into layers, we have to obtain the degree
of volatility. To obtain the degree of volatility, in this evaluation, we adopt the
method of software system’s near decomposition which use the quantification
method of type 3. This method produces the score of elements from their rela-
tions in a two-dimensional table [1]. We treat the scores as scaled values of the
degree of volatility. In the middle side of table in Fig. 3, we added 3 columns
containing 3 layers taken from the 3-layer architecture. Then we fill in the table
how strong the requirement is related to each of the layers. After converting the
symbols into scaled numbers, we obtain the requirements-architecture matrix as
the input of the quantification method of type 3. The result contains the scores
of both requirements and architecture layers. The right side of table in Fig. 3
shows the requirements grouped into 3-layer architecture which are sorted based
on the scores. Requirements are arranged from those which are not likely to be
changed to those which are having bigger potential of changing. As stated in the
twin peaks model, this process should be incrementally conducted in order to
obtain finer-grain result.

49

4 Conclusions

In a standard list of software life cycle processes, such as that in ISO/IEC/IEEE
Standard 12207:2008, software design consists of two activities that fit between
software requirements analysis and software construction. Nuseibeh has already
proposed the twin peaks model by giving the equal status of the specification of
requirements and architecture, and to provide more detail and concrete method,
Watanabe et al. has proposed to combine the method of software requirements
analysis based on QFD with the twin peaks model.

In this paper, we have proposed applying the layering concept to requirements
analysis and architectural design, in order to obtain layered requirements and
a layered architecture. This layered structure provides a stable architecture but
adaptable in the presence of changing requirements.

Although we have provided illustrations for our approach, we exposed only
a concept or likely an idea. More work remains to evaluate the validity of the
method and the e↵ectiveness of the approach in a real project.

References

1. Anang, Y., Amemiya, A., Yoshikawa, M., Watanabe, Y., Shindo, H.: A Software
Tool for Making a Two-way Table Like a Quality Table. In: Proceedings of 11th
International Symposium on Quality Function Deployment

2. Boehm, B.: A Spiral Model of Software Development and Enhancement. Computer
21(5), 61–72

3. Brown, K., Craig, G., Hester, G., Pitt, D., Stinehour, R., Weitzel, M., Amsden,
J., Jakab, P.M., Berg, D.: Enterprise Java Programming with IBM WebSphere.
Addison Wesley (2001)

4. Bushmann, F., Meunier, R., Rohnert, H., Somerlad, P., Stal, M.: Pattern-oriented
Software Architecture: A System of Patterns. John Wiley & Sons (2001)

5. Dev, H., Awasthi, R.: A Systematic Study of Requirement Volatility during Soft-
ware Development Process. International Journal of Computer Science Issues 9(2),
527–533 (2012)

6. Japanese Standards Association: JIS Q 9025:2003 Performance Improvement of
Management Systems – Guidelines for Quality Function Deployment

7. Nuseibeh, B.: Weaving the Software Development Process Between Requirements
and Architectures. In: Proceedings of 23rd International Conference on Software
Engineering, International Workshop on Software Requirements to Architectures

8. Singh, M., Vyas, R.: Requirements Volatility in Software Development Process.
International Journal of Soft Computing and Engineering (4), 259–264

9. Watanabe, Y., Kawakami, Y., Iizawa, N.: Software Requirements Analysis Method
using QFD. In: Proceedings of 18th International Symposium on Quality Function
Deployment

10. Watanabe, Y., Yoshikawa, M., Shindo, H.: Software Development Method based
on Twin Peaks Model with QFD. In: Proceedings of 19th International Symposium
on Quality Function Deployment

50

