
IJCAT - International Journal of Computing and Technology, Volume 3, Issue 7, July 2016
ISSN : 2348 - 6090

www.IJCAT.org

357

A Proposal of Refactoring Method for Existing

Program Using Code Clone Detection and Impact

Analysis Method

1 Masakazu Takahashi, 2 Yunarso Anang, 3 Reiji Nanba, 4 Naoya Uchiyama, 5 Yoshimichi Watanabe

 1,5 Dept. of Research Interdisciplinary Graduate School, Div. of Engineering, Univ. of Yamanashi

Kofu, Yamanashi 400-8511, Japan

2,4 Dept. of Education, Integrated Graduate School of Medicine, Engineering, and Agricultural Science, Univ. of Yamanashi

Kofu, Yamanashi 400-8511, Japan

3 Dept. of Environmental Engineering, Daiichi Institute of Technology

Abstract - This paper proposes a method that redesigns a

program with an inappropriate structure into a program

with appropriate structure. When a program has been using

for a long period, many functional additions and

modifications to the program have occurred. Those are

realized by copying & pasting a part of the program and

modifying it. As a result, the program becomes to have

inappropriate structure and to contain many similar

portions. Those similar parts make future maintenances of

the program difficult. So, this paper proposes a method that

clarifies similar portions in the program and integrates all

similar parts into a common portion by using Code Clone

detecting method. Furthermore, this paper proposes a

method that the current program structure translates into

the appropriate program structure by using a refactoring

method when integrating code clones. Consequently, the

program becomes to be able to adjust functional additions

and modifications in the future. Additionally, the program

can maintain for a long period.

Keywords - Refactoring, Code Clone, Impact Analysis,

Legacy System, Maintenance.

1. Introduction

This paper proposes a method to redesign program that

can be maintained easily for a long period by

summarizing similar portions in the program and by

rewriting the original program structure into the

appropriate program structure. Many modifications to an

existing program consist of addition and/or modification

of functions. Hereinafter, generic term both for addition

and modification is called a modification. Existing

programs have many similar program portions

(hereinafter, similar program portion is called as Code

Clone: CC) [1] and inappropriate program structures after

modifications during long period of operation, because

modifications of functions are done by copying & pasting

existing program parts and rewriting of existing

programs.

This paper proposes a method to redesign an existing

program written in Java, such as representative Object

Oriented Programming Language (OOPL), without CC

and with appropriate program structure by summarizing

CC, redesigning and rewriting existing program. Here in

after, this work is called as refactoring. Additionally, to

avoid regression errors when conducting refactoring, a

method to specify test scopes accompanied by refactoring

is proposed. In the proposed method, for test efficiency,

test scope is clarified in two steps: in the unit of members

in the classes and the unit of lines within methods. By

conducting those works, existing programs are rewritten

to appropriate program structures without CC, rewritten

programs can be modified easily and efficiently, and

rewritten programs become easy to be maintained for a

long period.

The organization of the rest of this paper is as follows.

Chapter 2 describes the related studies. Chapter 3 describes

the detection of CCs, refactoring, identification of re-

verification scopes, and a prototype tool we developed.

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 7, July 2016
ISSN : 2348 - 6090

www.IJCAT.org

358

Chapter 4 evaluates the proposed method. Finally, chapter 5

describes the future perspectives of the proposed method and

tool.

2. Related Studies

This chapter describes the previous studies related to the

proposed method. The previous studies are broadly

categorized into those regarding CC detections, those

regarding refactoring, those regarding impact analysis,

and those regarding CCs included in legacy systems.

First, studies regarding CC detection are described as

follows. CCs are detected in the unit of characters,

expressions, or lines of program codes [2]. The character-

based CC detection process can detect CCs in any unit;

however, this process can detect only completely-matched

CCs. Furthermore, this process takes a lot of time to

detect CCs because of conducting matching for each

single character. The expression-based CC detection

process deletes unnecessary blanks, line breaks, and

comments preliminarily, while replacing variable names

and numerical values with the specific characters.

Therefore, this process can detect program portions where

variable names and numerical values have been changed

as CCs. As is the case of expression-based CC detection,

the line-based CC detection process deletes unnecessary

blanks, line breaks, and comments and replaces variable

names and numerical values with the specific characters,

and then calculates the hash value of each line. Once this

hash value is calculated, CCs can be detected quickly.

Many tools implemented to those CC detection methods

are developed as prototype tools.

For example, the CC detection tool, CCfinder [3], extracts

some information related to CCs, such as lengths of CCs,

position, distributions (classes and members that CCs

belong.). Furthermore, the CC analysis tool, Aries [4]

analyses calling relationships between methods in CC,

and substitution and reference relationships of fields. This

information that shows characteristics of CCs are called

metrics. Representative metrics are shown as follows: the

Number of Referred Variables (NRV): average number of

external defined variables referred in program portions,

the Number of Substituted Variables (NSV): average

number of variables substituted in program portions, the

Dispersion of Class Hierarchy (DCH): maximum distance

between each program portions in class hierarchy,

Deflation (DFL): reduced lines of code when

summarizing common program portions, Length (LEN):

maximum length of CC, and Population (POP): number

of program portions in CC.

Next, studies regarding refactoring are described.

Refactoring is a method to redesign existing program into

the program with appropriate structure. Refactoring is

conducted by modifying the existing program, checking

it, and redesigning it in step by step. Those processes

avoid falling into a state that the modified program

behaves unexpectedly. Design patterns are known as the

standard of the proper program design. Introduction of

design patterns into program design can enhance

readability and maintainability of program written in

OOPL. Gamma et al. have proposed 23 design patterns

[5]. Moreover, Fowler et al. have organized representative

refactoring methods (hereinafter, referred to as refactoring

formats) in a catalog formats [6]. Higo et al. have

proposed support methods and tools for proposing

refactoring formats [7, 8, 9].

At third, studies regarding impact analysis are described.

Impact analysis is a method to clarify the scope of

program which might be affected when the program is

modified. Kung et al. have proposed a method to clarify

program classes which might be under influence of

program modification based on the class firewall

concept[10]. However, this method had a problem in that

methods and attributes (hereinafter, generic term both for

method and attribute is called as members) not modified

would be included in the range under influence. Jang et

al. have proposed a method to clarify methods and

attributes under modification by using the Member

Dependency Graph which indicates the access

relationship between methods and attributes[11].

However, this method also has a problem in that a large

amount of program portions dependent from influence

can be included within members. As mentioned above, the

existing methods were inefficient in testing program

scopes under influence of program modification.

At last, studies regarding CCs in legacy systems are

described. Legacy systems are systems that are difficult to

maintain functions because of many changes for a long

period of operation. Monden et al. investigated numbers

of CCs in enterprise (backbone) systems that are

developed by five software development vendors[12]. As a

result, when combined tests were finished, the rate of CC

portion was over 40% in the whole program.

Additionally, it was shown that rate of CC portion in

large scaled systems tends to be higher.

3. Proposed Program Refactoring Method

This paper proposes a method that implements program

refactoring by detecting CCs within a program in order to

make it easier and more efficient to modify the program. By

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 7, July 2016
ISSN : 2348 - 6090

www.IJCAT.org

359

doing so, this method achieves an appropriate program

structure that can be used for a longer period of time robustly.

Figure 1 shows the proposed refactoring procedure written in

Data Flow Diagrams (DFD). Here, we assume that processes

in the DFD are executed sequentially along the process ID in

DFD. Rectangles in Figure 1 show processes, and directed

lines show data flows. Furthermore, we define that

refactoring is conducted on every single pair of single type in

CCs. The reason is that unexpected behaviors may be caused

by a program with inappropriate modifications when all CCs

are summarized, redesigned, and rewritten simultaneously.

Therefore, refactoring is conducted for single pair of CCs

(hereinafter, the pair is called as CC pair) in step by step,

checking and investigating by engineers. As shown in DFD0

in Figure 1, refactoring process consists of four processes. As

shown in DFD1 in Figure 1, the process1.1 detects all CCs

from a program before modification and develops a list of

CCs (hereinafter, this list is called as CC list). The process1.2

creates a diagram referred to as a Member Access Graph

(MAG) which indicates the access relationship between

methods and attributes before modification, and a diagram

referred to as a Member Override Graph (MOG) which

indicates the inheritance relationship of methods before

modification. As shown in DFD2 in Figure 1, the process2.1

selects a CC pair from CC list which will be target of

refactoring. The process2.2 then analyzes the content of the

CC pair in order to create information necessary for

determining the refactoring format (hereinafter, this

information is called as refactoring information. This

information is described in section 3.2). If refactoring is not

required, refactoring is judged to be impossible to conduct,

this step returns to the initial step, the process2.1, and selects

the next CC pair. As shown in DFD3 in Figure 1, the

process3.1 modifies the program based on refactoring

information.

This process is done manually. When refactoring has been

completed, the process3.2 creates the MAG and MOG of the

modified program. As shown in DFD4 in Figure 1, the

process4.1 then implements impact analysis regarding the

relevant modification based on the MAG and MOG before

and after modification. The scope of the program which is

under the influence of the modified portions differs between

MAG and MOG before and after modification. Based on this

result, the process4.2 tests the modified program. This test

process is done manually. This completes refactoring for one

CC pair. Afterward, the program is refined and elevated to an

appropriate structure by repeating the above-mentioned

procedure from process1 through process4. The following

section describes what is actually done in each step (process)

in detail.

3.1 Analysis of Program before Refactoring

 (process 1)

This section describes the operation of process1. This

operation consists of CC detection and the creation of

MAGs and MOGs. Each of the tasks is as follows:

(1) CC detection (process 1.1)

CCs are generated when a program is developed by copying

& pasting, and rewriting the existing portions of the existing

program. Variable names and numerical values differ in

many CCs, while they are not completely matched.

Therefore, a method which can detect CCs with the same

program structure but slightly rewritten is required. Figure 2

shows the detection flow of CCs which have the same

program structure. First, information which has nothing to do

with program execution, such as blanks,

Fig.1 Proposed refactoring procedure

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 7, July 2016
ISSN : 2348 - 6090

www.IJCAT.org

360

Fig.2 Flow of code clone detection

comments, line breaks, or tabs within the program is deleted.

At this time, instruction that is written in plural lines for

readability is rewritten into instruction that is written in

single line. Second, variable names, function names, and

numerical values are replaced with specific characters, and

the basic program structure is clarified. Third, the hash value

is calculated per each line of the program with the basic

program structure clarified. This hash value is calculated by

obtaining the ACII codes of each character, adding them, and

then dividing it with the value of m. The value of m is the

index size of hash table (m shows variation that hash function

can classify). Finally, portions, where the hash value of each

line matches more than n, are collected and listed into a CC

list. The value of n shows minimum lines that we consider

the similar program portion to be a CC. The value of m and n

is changeable as necessary. In this research, we settled that

the value of m is 50 and the value of n is 30 based on our

experiences.

Fig.3 Sample of MAG and MOG

(2) Creation of MAG and MOG (process1.2)

Programs written in Java execute their services based on

combinations of method calls between objects and references

of attributes. This research is using MAG and MOG to

represent those services. MAG graphically indicates the

relationship between method calls and references of

attributes. MAG expresses the relationship of method calls in

the directed line from the calling source (caller) to the calling

destination (callee), while expressing the attribute reference

relationship in the directed line from the reference source to

the reference destination. MOG graphically indicates

overridden methods accompanied by class inheritance,

implementation of methods which are defined abstractly, and

attribute encapsulation. MOG expresses overridden methods

in the directed line from the method to override to method to

be overridden.

Figure 3 shows the corresponding relationship between MAG

and MOG. The program shown in Figure 3 (a) has the

following classes: WorkerClass, SpecialWorkerClass, and

ApplicationClass. In addition, the WorkerClass has work(int

x) method, the SpecialWorkerClass has specialWork(int x)

method and work(float x) method, and the ApplicationClass

has doEasyWork() method and doSpecialWork() method. The

doEasyWork() in the ApplicationClass calls the work(int x) in

the WorkerClass, and the doSpecialWork() in the

ApplicationClass calls the specialWork(int x) in the

SpecialWorkerClass. Therefore, MAG is developed by

drawing directed line from the doEasyWork() in the

ApplicationClass to the work(int x) in the WorkerClass, and

directed line from the doSpecialWork() in the

ApplicationClass to the spcialWork(int x) in the

SpecialWorkerClass. Figure 3 (b) shows MAG. Rectangles

with bold lines show classes, rectangles with narrow lines

show methods. Next, the work(int x) in the

SpecialWorkerClass overrides the worker(int x) of the

WorkerClass. Figure 3 (c) shows MOG. Therefore, MOG is

developed by drawing directed line from the work(float x) in

the SpcialWorkerClass to the work(int x) in the WorkerClass.

The meanings of rectangles in the MOG are same as

meanings in MAG.

3.2 Analysis of Target CC Pair for Refactoring

(Process 2)

This section describes the operation of process2. This

operation consists of the determination of a CC pair which

conducts refactoring (process2.1), and the determination of

refactoring formats(process2.2). A CC pair is determined

simply by choosing a CC pair from CC list. Therefore, the

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 7, July 2016
ISSN : 2348 - 6090

www.IJCAT.org

361

determination of refactoring formats is described below

(process2.2).

Refactoring formats are determined based on program before

modification and refactoring information which is obtained

by analyzing the program portions of CC pairs under

refactoring. Refactoring information consists of the start line

of the CC, the end line of the CC, the total number of CC

lines, the number of external variables used, the number of

called methods, the parent class, and refactoring formats. The

start and end lines of the CC are obtained from the CC list.

The types and number of external variables, the types and

number of called methods, and the parent classes are obtained

from MAGs and MOGs. The reason that those values are

included in refactoring information is because it provides a

better way to obtain effects of refactoring in the case that a

program portions have single structural cohesion. The

structural cohesion means that program portion contains

whole instruction blocks, such as for(){}, while(){}, and

switch(){}. Furthermore, if the combination of the program

portion and the program portions surrounding it is weak, it

will be easier to obtain effects of refactoring. The weak

combination means that there are less assignments and

references to filed variables, and less calling of methods.

When CC has those characteristics, the harmful effects of

summarizing CCs are less, and refactoring will be easy to

conduct.

Table 1 indicates the refactoring formats treated in this

research and the judging criteria for applying these

formats.

Additionally, the proposed method indicates refactoring

method based on the decided refactoring format. Because

appropriate refactoring operation has already been

decided according to the CC format, the proposed method

indicates refactoring method by showing both current and

modified program structure written in Class diagrams.

Table1 list of refactoring format and judging criteria

Refactoring

format
Refactoring procedure Judging criteria

Extract Method Integrates those operations (CCs) overlapping within

the same class by creating a new method.

CCs exist within the same class.

A few external variables exist.

A few calling methods exist.

Pull Up Method Integrates those operations (CCs) overlapping within the

same subclass having the same super class by creating a

new operation in the super class.

CCs do not exist within the same class.

CCs have the same super class.

CCs within the subclass exist.

Extract Class Integrates multiple operations (CCs) overlapping within

the same class by creating a new class.

CCs exist within the same class.

Plural CCs exist.

Extract Super

Class

Integrates multiple operations (CCs) overlapping within

the class without having the same super class by

creating a new parent class. The original class becomes

the subclass of the super class.

CCs do not exist within the same class.

CCs do not have the same super class.

Plural types of CCs exist within the different

class.

Parameterized

Method

Integrates those overlapping operations within the

same class, where only the values to be used within

operations differ, by making the values to be used

one argument.

CCs exist within the same class.

Different types of external variables are used

in the CCs.

Different types of method are used in the CCs

Different values are used within CCs.

Pull Up Field Integrates multiple subclasses with the same super

class having the same attributes by giving the super

class attributes.

CCs have the same super class.

CCs have the overlapping attributes within

each subclass.

3.3 Modification and Analysis Program (Process 3)

Process3 modifies the program based on refactoring

information and creates MAG and MOG of program after

modification. Program modification is done manually. The

creation of the MAG and MOG of the program which has

been modified is the same operation as that described in

section 3.1 (2).

3.4 Implementation Impact Analysis and Tests

(Process 4)

This section described the operation process4. Impact analysis

is a method to identify a scope of a program under the impact

of modification. Scopes under impact are clarified in the unit

of members in the classes and in the unit of lines within

methods. This research clarifies a program scope which needs

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 7, July 2016
ISSN : 2348 - 6090

www.IJCAT.org

362

to be verified in two stages due to program modification. The

first stage clarifies a program scope under the impact of

program modification in the unit of members in the classes,

while the second stage clarifies a program scope under the

impact of program modification in the unit of lines within

methods.

The member-based impact analysis which is the first stage

clarifies the scope under impact in the unit of members by

clarifying differences in MAG and MOG between before and

after program modification. First, the relationship of access to

members which appear and disappear due to program

modification is extracted based on comparison of MAG

before and after program modification. In a similar manner,

the override relationship of methods which appeared and

disappear due to program modification is then extracted

based on comparison of MOGs before and after program

modification. These differences become members which are

under impact of program modification.

Fig.4 Sample result of impact analysis using MAG and MOG

Fig.5 Procedure of static slicing

Figure 4 shows a proposed process specifying impact scopes

from MAGs and MOGs before and after modification. Left

side in Figure 4(a) shows MAG and MOG before

modification. Targeted program has three classes, such as

ApplicationClass, BaseClass, and DerivedClass. Before

modification, the ApplicationClass has method_a1 and

method_a2, the BaseClass has method_x1 and method_x2,

and the DerivedClass has method_x3. The method_a1 in the

ApplicationClass accesses the method_x1 in the BaseClass

and the method_x3 in the DerivedClasss, and the method_a2

in the ApplicationClass accesses the method_x2 in the

BaseClass. There is no override of methods (MAG does not

have any directed line). After modification, the method_x1 is

added to the DerivedClass, and the method_x1 in the

DerivedClass overrides the method_x1 in the BaseClass. As a

result, the method_a1 in the ApplicationClass accesses both

the method_x1 and the method_x3 in the DerivedClass.

Upper right side in Figure 4(a) shows MAGs after

modification, and lower right side in Figure 4(a) shows

MOGs after modification. Here, bold directed line in the

figure shows newly created access, and bold dotted direct line

in the figure shows disappeared access. When using MAGs/

MOGs developing tool described in section3.5, left side of

Figure 4(b) shows MAGs and MOGs before modification,

and right side of Figure 4(b) shows MAG and MOG after

modification. By comparing MAGs and MOGs before and

after modification, scopes of change impact are clarified. In

this case, deep gray cell shows a disappeared access after

modification, and light gray cells show newly appeared access

relationship and newly appeared override relationships after

modification. Figure 4(c) shows change impact scopes based

on the differences of access and override relationships before

and after modification. These cells are dark and light gray

color cells that are shown in MAGs and MOGs before and

after modification. In this case, there is no deletion of MAG.

Normally this information contains creation/deletion of

MAGs and MOGs.

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 7, July 2016
ISSN : 2348 - 6090

www.IJCAT.org

363

The second stage, sentence-based impact analysis, clarifies

those lines of the program code under impact by using static

program slicing for the affected portions extracted in the first

stage. Ripples of influence between methods are propagated

through arguments. Influence of change impact is considered

two types: the case that the arguments influence the called

method, and the case of arguments influence callee method.

In the former case, change impact scopes can be obtained by

extracting following lines: lines that use arguments, lines that

assign result calculated using arguments to new variables,

lines that use assigned variables, and lines that assign result

calculated using assigned variables to new variables. In the

latter case, change impact scopes can be obtained by

extracting lines according to reverse sequence of program

execution. This executing process is called static program

slicing. Static program slicing is a method which focuses on

any variable in the program in order to extract only program

portions (lines) necessary for calculating the variable focused

on. These program portions are referred to as static slices.

When any input data is given to static slices, the same

calculation result as the original program is obtained for the

variables focused on. Figure 5 shows an example of static

slice extraction procedure. The numbers listed on the left side

of Figure 5 indicate the number of program lines. First, the

variable s in the 07th line of the original program is focused

on, and this variable s in the 07th line is calculated by using

the variable x and y in the 05th line. The variable s is

initialized in the 03rd line. While, the variable x and y in the

05th line is passed as arguments of showData method in the

01st line. Additionally, making those sliced lines executable,

{ in 02nd line and } in 09th line are added to those sliced

lines. As shown in right side of Figure 5, the static slices

focused on s in 07th line are the lines {01, 02, 03, 05, 07, 09}.

This static slice can calculate the value of s, when x and y are

given.

3.5 Creation of a Refactoring Support Tool Prototype

This section describes a prototype that supports the operation

of each process in Figure 1. This prototype is composed of the

following subtools: CC detection tool, MAG/MOG creation

tool, refactoring format proposal tool, and impact analysis

tool. Each subtool is explained as follows:

The CC detection tool detects CCs containing slight changes

made within a program. This tool is used by process1.1 in

Figure 1. The input of this tool is a program, while the output

is a CC list. Figure 6 shows an example of a CC list output by

the CC detection tool. Though the output format of CC list is

Comma-Separated Value (hereinafter, CSV) type, Figure 6

shows CC list as table format in considering readability of

contents. The CC list contains the paths of all files where CCs

exist, the start/end lines of CCs of all CCs. The MAG/MOG

creation tool creates the MAG and MOG of a program. This

tool is used by process1.1 and process3.2 in Figure 1. The

input of this tool is a program, while the output is MAG and

MOG. MAG contains classes and members to which the

members of the call source belong (caller), and classes and

methods to which the members of the call destination belong

(callee). MOG contains overriding methods and methods to

be overridden. Figure 7 shows an example of MAG and

MOG output by the MAG/MOG creation tool. Though the

output format of MAG/MOG is CSV type, Figure 7 shows

MAG and MOG as table format in considering readability of

contents. The refactoring format proposal tool creates

refactoring information of selected CC pair. This tool is used

by process2.2 in Figure 1. The input of this tool is a program,

a CC list (one CC pair selected from the CC list), MAG and

MOG, while the output is the refactoring information.

Refactoring information contains the start line of CC, the end

line of CC, the total number of CC lines, the number of

externally defined variables used, the number of method calls,

the parent class, and refactoring formats.

Figure 8 indicates refactoring information as the output of the

refactoring format proposal tool. Though the refactoring

information is CSV type, Figure 8 shows the refactoring

information as table type format in consideration for

readability of contents. Additionally, Figure 9 shows a sample

screen of the proposal for refactoring format of the cc pair.

The left side of this screen shows a program structure (class

diagrams) before refactoring, and the right side of this screen

shows a program structure (class diagrams) after refactoring.

The input of this tool is a refactoring format, while the output

is the refactoring order sheet. The refactoring order sheet

shows how to modify the program, and this is used when

engineers modify the program. The impact analysis tool

clarifies program scopes which are under impact of program

modification based on the unit of members and lines from the

program including MAGs and MOGs before and after

program modification. This tool is used by process4.1 in

Figure 1. The input of this tool is a modified program and

MAGs/ MOGs before and after modification, while the

output is the impact scopes. The impact scopes contain

appeared/disappeared accesses and override relationships.

Figure 10 shows a sample output of impact scope output by

the impact analysis tool. Though the output format of impact

scope is CSV type, Figure 10 shows impact scope as table

format in considering readability of contents.

4. Evaluation of the Proposed Method and

Tool Conclusions

This chapter describes the results of evaluation for the

proposed method and the developed tool. In order to evaluate

them, we conducted refactoring by inputting two programs to

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 7, July 2016
ISSN : 2348 - 6090

www.IJCAT.org

364

the tool. One was the tool described in section 3.5 (which was

just completed with refactoring not conducted), and the other

was an open-source build tool, Ant (Ver. 1.9.4, where it had

been used for a long period). Before applying the method, the

developed tool has 5927 lines (hereinafter, LOC) and 24

classes, while Ant has 18026 LOC and 51 classes.

Fig.6 Sample of CC list

Fig.7 Sample of MAG and MOG output

Fig.8 Sample of refactoring information

Fig.9 Sample screen of refactoring order sheet

Fig.10 Sample of impact scope output

Table 2: Application result of the tool prototype

Result Prototype Ant

LOC before change 5927 18026

Detected CCs 42 32

Integrated CCs 23 19

LOC after Change 4994 17619

Reduced LOC 933 407

Table 3: Breakdown of proposed refactoring formats

Refactoring format Prototype Ant

Pull up method 1 3

Extract method 14 16

Extract class 1 0

Parameterized

method

13 16

Cannot Integrate 8 13

Table 2 shows the result of applying the proposed method,

and Table 3 shows the breakdown for detected CCs and

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 7, July 2016
ISSN : 2348 - 6090

www.IJCAT.org

365

applied refactoring formats. LOC in Table 2 indicates the

number of program lines. The total sum of refactoring

formats per program in Table 3 does not correspond to the

number of detected CCs that is indicated in Table 2. This is

because multiple types of refactoring formats which are

applicable to one CC were proposed by the tool.

The results of Table2 are explained in the following. At first,

the developed tool had 42 CCs when the tool was developed

immediately after, the tool proposed that 23 CCs of them are

judged to be able to conduct refactoring. 19 CCs that could

not be conducted refactoring had following reasons: CCs did

not exist in the same class, and CCs did not have same super

class. In those cases, if summarizing CCs, the coupling

increased too much. As a result of engineer's investigation for

refactoring formats recommended by the tool, 15 CCs could

conduct refactoring. The representative reasons that CCs did

not conduct refactoring in spite of the proposals for

refactoring are as follows: CC was a part of "if then else"

instruction block et al. (2 cases), and CC used many external

variables (6 cases). As a result of conducting refactoring,

LOC of the tool became 4994 LOC, and 944 LOC was

reduced. This accounts for 16% of the entire program. The

rate of LOC reduction due to CC integration was large. This

is because no refactoring had not been conducted for refining

the program structure yet. On the other hand, ANT had 32

CCs with adequate operation experience. The tool prototype

proposed that 30 CCs of them are judged to be able to

conduct refactoring. 2 CCs that could not be conducted

refactoring had following reasons: CCs did not exist in the

same class, CCs did not have same super class. As a result of

engineer's investigation for refactoring formats recommended

by the tool, 19 CCs could conduct refactoring. The

representative reasons that CCs did not conduct refactoring in

spite of the proposals for refactoring are as follows: CC was a

part of "if then else" block et al. (9 cases), and CC used many

external variables (4 cases). As a result of conducting

refactoring, LOC of ANT became 17619 LOC, and 407 LOC

was reduced. This accounts for 2% of the entire program. The

rate of LOC reduction due to CC integration was small,

because the program structure was properly elevated to a

certain degree by use and changes that had been made in the

past.

The results of Table3 are explained in the following. As for

the developed tool, the breakdown for refactoring formats

includes one simple application of the Pull UP Method, one

simple application of the Extract Method, one simple

application of the Extract Class, and 13 simultaneous

applications both of the Extract Method and the

Parameterized Method. When it comes to ANT, the

breakdown for refactoring formats includes three simple

applications of the Pull UP Method, and sixteen simultaneous

applications both of the Extract Method and the

Parameterized Method. In both of the tool and ANT, the

Extract Method and the Parameterized Method were more

used as the refactoring formats. This result was considered

that there were many CCs that were created by copy & paste

of original program, and modifying the constant values in

CCs. As for "Cannot Integrate" in Table 3, one CC was

actually part of the "if then else" command. Other CCs were

that external variables were frequently used and methods

were often called within the CC. Therefore, CC integration

was hard to implement only by changing and increasing

arguments. We made plural programmers examine the above

refactoring results, and they confirmed that all refactoring

processes were properly implemented.

Judging from the above described results, we were able to

confirm that application of the proposed method and the tool

that we developed could make it possible to refactor a

program with a proper program structure by integrating CCs.

Moreover, it is found that only few CCs can be integrated for

a program which is being used for a long period. As for such

programs which are planned to be used for a longer period,

therefore, CCs need to be integrated in the appropriate

timing, and it is necessary to redesign an appropriate

program structure that is easy and efficient to maintain and

add functions.

5. Conclusion

This paper proposed a method that summarizes CCs in the

existing program written in Java and redesigns the existing

program into the program with appropriate program structure

using CC detection and impact analysis method.

Additionally, our prototype that supports conducting the

proposed method was developed. As a result of applying the

proposed method and the tool, we found that CCs in the

existing programs were summarized and redesigned to

appropriate program structure. If the proposed refactoring

method is applied to the existing program, they will be able to

be achieved to increase adequacy and efficiency of modifying

the existing program.

The future issues include how to judge the refactoring format

to be applied where multiple refactoring formats can be

applied, the support for modifications of a program where the

proposed refactoring format is applied, and the testing the

modified program. When the structure (design) of the

program is too much inappropriate, we cannot obtain enough

effects because inappropriate program structure requires a lot

of costs for redesigning and rewriting of the program. The

examples of inappropriate program structure are as follows:

too less classes (inappropriate class structure), too large

method (it is difficult to identify impact scope), and too much

IJCAT - International Journal of Computing and Technology, Volume 3, Issue 7, July 2016
ISSN : 2348 - 6090

www.IJCAT.org

366

method calls and references of external variables et al. We

will also consider influence when conducting refactoring for

modules referred externally. Furthermore, we also consider

the expansion of proposed method for applying the embedded

program domain. The proposed method is useful for applying

to enterprise programs, while it is difficult to apply to

embedded programs. For example, enterprise program means

accounting, allowance, and material resource planning

programs, while embedded program means machinery

control program. The reasons are as follows: generally,

embedded program uses many global variables (external

defined variables), and real-time operations that are executed

by interrupts have to be considered. Additionally, based on

the viewpoint of operation streamlining, we consider

automation or semi-automation of these processes in order to

fulfill our support tool. Moreover, by increasing applicable

refactoring formats and giving feedbacks of the application

results to the tools, we are going to try to make refactoring

available for a wide variety of programs.

References

[1] Baker, B.S, A Program for Identifying Duplicated Code,

Proc. of Computing Science and Statistics: 24th

Symposium on the Interface, No. 25, 1992, pp.49-57.

[2] Baker, B.S, On Finding Duplication and Near-Duplication

in Large Software System, Proc. of the Second IEEE

Working Conf. on Reverse Engineering, 1995, pp.86-95.

[3] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue,

CCFinder: A Multilinguistic Token-Based Code Clone

Detection System for Large Scale Source Code, IEEE

Transactions on Software Engineering, Vol. 28, No. 7,

2002, pp. 654- 670.

[4] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, and

Katsuro Inoue, Aries: Refactoring Support Tool for Code

Clone, Proceedings of 3rd Workshop of Software Quality,

2005, pp.53-56.

[5] Erich Gamma, Richard Helm, Ralph Johnson, John

Vlissides, Elements of Reusable Object-Oriented

Software. Addison-Wesley Publishing Company,

1995.

[6] Martin Fowler, Kent Beck, John Brant, William

Opdyke, don Roberts, Refactoring: Improving the

Design of Existing Code, Addison Wesley Longman

Inc1999.

[7] Yoshiki Higo, Yasushi Ueda, Toshihiro Kamiya,

Shinji Kusumoto, and Katsuro Inoue, On Software

Maintenance Process Improvement Based on Code

Clone Analysis, Journal of Information Processing Society of

Japan, vol. 45, No.5, 2004, pp. 1357-1366.

[8] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, Katsuhiro

Inoue, Refactoring Support Environment Based on Code Clone

Analysis, IEIC Transaction, vol.J88-D-I, No.2, 2005, pp.186-195.

[9] Norihito Yoshida, Yoshiki Higo, Toshihiro Kamiya,

Shinji Kusumoti and Katsuro Inoue, On Refactoring

Support Based on Code Clone Dependency Relation,

Journal of Information Processing Society of Japan, vol.3, no.48,

2007, pp.1431-1442.

[10] D. Kung et al., "Class Firewall, Test Order, and

Regression Testing of Object-Oriented Programs"

Journal of Object-Oriented Programming, 1995,

pp.51-65.

[11] Yoon K. Jang, Heung S. Chae, Yong R. Kwon, and

Doo H. Bae, Change Impact Analysis for a Class

Hierarchy, Proc. of Software Eng. Conf., 1998,

pp.304-311.

[12] Monden A., Saito S. and Matsumoto K., capturing

industrial experiences of software maintenance using

product metrics, Proc.of 5th World Multi-Conf. on

Systems, Cybernetics and Informatics, Vol.2, 2001,

pp.394-399.

Masakazu Takahashi received B.S. degree in 1988 from Rikkyo
University, Japan, and M.S. degree in 1998, Ph.D. degree in 2001,
both in Systems Management from University of Tsukuba, Japan. He
was with Ishikawajima-Harima Heavy Industries Co., Ltd. from 1988
to 2004. He was with Shimane University from 2005 to 2008. He is a
professor in University of Yamanashi, Japan since 2014. His
research interests include software engineering and safety.

Yunarso Anang received B.E. degree in 1995 and M.E. degree in
1997 both in software engineering from University of Yamanashi,
Japan. He was with SYNC Information System, Inc., Japan from
2000 to 2007, as a senior system engineer. From 2008, he is with
Institute of Statistics (Sekolah Tinggi Ilmu Statistik), Jakarta,
Indonesia, as a lecturer in computer science. From 2014, he is a
Ph.D. student at University of Yamanashi, Japan. His research
interests include software engineering.

Reiji Nanba received B.E. degree in 1999 from Daiichi Institute of
Technology, Japan. ME degree in 2003 and Ph.D. degree in 2008,
Shimane University, Japan. He was an Assistant Professor in Daiichi
Institute of Technology in 2008. He is an associate professor till now
in Daiichi Institute of Technology in 2011. His research field is mainly
in Civil and Environmental Engineering and Engineering Education.

Naoya Uchiyama received B.E. degree in 2012 and M.E. degree in
2014 both in University of Yamanashi, Japan. He is with TOKAI
group. His research field is network security.

Yoshimichi Watanabe received the B.S. and M.S. degrees in
computer science from University of Yamanashi, Japan in 1986 and
1988 respectively and received D.S. degree in computer science
from Tokyo Institute of Technology, Japan in 1995. He is presently an
associate professor of the Department of Computer Science and
Engineering at University of Yamanashi. His research interests
include software development environment and software quality.

