
A Method of Program Refactoring based on Code Clone Detection and Impact Analysis

Masakazu Takahashi
1†

, Reiji Nanba
2
, Yunarso Anang

1
, Tatsuya Uchiyama

1
, and Yoshimichi Watanabe

1

1
Department of Computer Science and Engineering, University of Yamanashi, Yamanashi, Japan

(Tel : +81-55-220-8585; E-mail: {mtakahashi, g14dma01, g12mk003, nabe}@yamanashi.ac.jp)
1
Department of Civil Engineering, Dai-Ichi Institute of Technology, Kagoshima, Japan

(Tel : +81-55-220-8585; E-mail: r-nanba@daiichi-koudai.ac.jp)

Abstract: This paper proposes a method that aggregates similar portions in a program into one common portion and

redesigns current program structure to appropriate program structure. When a new function is added to an existing

program, the function tends to be developed by copying & pasting a portion in the program and modifying its portion.

As a result, it becomes to exist many similar portions in the program. In the case that error modifications or changes

occurs in the similar portion, appropriate modifications are required to the all similar portions. It would be considered

that the quality and efficiency of those tasks are decreased. So that, this paper proposes a method that detect similar

portions with minor modifications and a method that aggregates those similar portions to one appropriate common

portion with well-defined program structure. As a result, current program becomes to be refined to the program that can

accommodate future modification or changes properly.

Keywords: Code Clone, Impact Analysis, Refactoring

1. INTRODUCTION

When developing a new program or when adding

and modifying program functions, in many cases,

programmers copy certain portions of the program and

paste them, while revising them, in order to complete

development of the program. This method retains a

number of similar program portions (code clones: CC)

within the program. Programs including a large

number of CCs have the following problems: Those

portions related to CCs are difficult to change, errors in

changes are highly likely to be produced, and the

process of making changes becomes inefficient. These

become issues when using programs for a long time.

This paper proposes a method to redesign a program,

written in Java as a representative object oriented

programming language (OOPL), into a proper program

structure by detecting CCs within the program. Moreover,

this paper proposes a method to clarify scopes of verification

associated with addition and modification of the program

(referred to as the program change). This proposed method

clarifies scopes where verification is needed in the unit of

method, filed, and line in order to streamline re- verification.

This can recreate a program including CCs into a proper

program structure without overlapped portions. By doing so,

this method can verify the adequacy of the recreated

program. Additionally, this proposed method makes it easier

and more efficient to subsequently change the program, in

order to achieve the program structure which is adequate to

use for a longer time.

2. RELATED STUDIES

This chapter describes the previous studies related to the

proposed method. The previous studies are broadly

categorized into those regarding CC detection, those

regarding refactoring, and those regarding impact analysis.

First, studies regarding CC detection are described in the

following section. CCs are detected in the unit of characters,

expressions, or lines. The character-based CC detection

process can detect CCs in any unit; however, this process

can detect only completely-matched CCs. Furthermore, this

process takes considerable time to detect CCs because of

conducting matching for each single character. The

expression-based CC detection process deletes unnecessary

blanks, line breaks, and comments preliminarily, while

replacing variable names and numerical values with specific

characters. Therefore, this process can detect program

portions where variable names and numerical values have

been changed as CCs. As is the case of expression-based CC

detection, the line-based CC detection process deletes

unnecessary blanks, line breaks, and comments and replaces

variable names and numerical values with specific characters,

and then calculates the hash value of each line. Once this

hash value is calculated, CCs can be detected quickly [1].

 Next, studies regarding refactoring are described. Design

patterns are known as the standard of proper program

design[2]. Introduction of design patterns into program

design can enhance readability and maintainability of

program written in OOPL. Gamma et al. have proposed 23

design patterns. Moreover, Fowler et al. have organized

representative refactoring methods (referred to as refactoring

formats hereinafter) in a catalog format [3]. Inoue et al. have

proposed support methods and tools for implementing

refactoring for a part of refactoring formats. Furthermore,

they have proposed benchmarks which can serve as

information for determining a proper refactoring format by

using the CC distribution status, CC length, and CC location

information. These benchmarks are referred to as metrics[4].

Representative metrics include the Number of Related

Variables (NRV, which is the average number of externally

defined variables referred within CCs), and the Number of

Substituted Variables (NSV, which is the average number of

variables assigned within CCs).

 Finally, studies regarding impact analysis are described.

Proceedings of the SICE Annual Conference 2016
Tsukuba, Japan, September 20-23, 2016

978-4-907764-50-0 PR0001/16 ¥400 ©2016 SICE 673

Impact analysis is a method to clarify the scope of program

which might be affected when the program is modified.

Kung have proposed a method to clarify program classes

which might be under influence of program modification

based on the class firewall concept [5]. However, this

method had a problem in that methods and fields not

modified (referred to as members hereinafter) would be

included in the range under influence. Jang have proposed a

method to clarify methods and fields under modification by

using the Member Dependency Graph which indicates the

access relationship between operations and properties [6].

However, this method also had a problem in that a large

amount of program portions dependent from influence can

be included within members. As mentioned above, the

traditional methods were inefficient in verifying program

portions under influence of program modification.

3. PROPOSED PROGRAM REFACTORING

METHOD

This paper proposes a method that implements program

refactoring by detecting CCs within a program in order to

make it easier and more efficient to modify the program. By

doing so, this method achieves a program structure that can

be used for a long time.

Fig.1 shows the proposed refactoring procedure.

Refactoring is conducted on every single pair of CCs. As

preparation for refactoring, STEP 1 detects CCs from a

program before modification. This step also creates a

diagram referred to as a Member Access Graph (MAG)

which indicates the access relationship between methods and

fields before modification, and a diagram referred to as a

Member Override Graph (MOG) which indicates the

inheritance relationship of methods. STEP 2 selects a pair of

CCs (referred to as a CC pair), which conducts refactoring,

from detected CCs. This step then analyzes the content of the

CC pair in order to create information necessary for

determining the refactoring format. Where refactoring is not

necessary or where refactoring is judged to be impossible to

conduct, this step returns to the initial step and selects the

next CC pair. STEP 3 modifies the program based on

information of refactoring. This process is done manually.

When refactoring has been completed, this step creates the

MAG and MOG of the program modified. STEP 4 then

implements impact analysis regarding the relevant

modification based on the MAG and MOG before and after

modification. The scope of the program which is under the

influence of the portions modified differs between MAG and

MOG before and after modification. Based on this result, the

program is verified. This verification process is done

manually. This completes refactoring for one CC pair.

Afterward, the program is refined and elevated to a proper

structure by repeating the above-mentioned procedure from

STEP 1 through STEP 4. The following section describes

what is actually done in each step in detail.

Fig.1 Proposed Refactoring Procedure

Fig.2 Flow of Cole Clone Detection

3.1 Preprocessing for Refactoring (STEP 1)

This section describes the operation of STEP 1. This

operation consists of CC detection and the creation of

MAG and MOG. Each of the tasks is as follows:

(1) CC detection

CCs are generated when a program is developed by

copying, pasting, and modifying the existing portions of the

program. Variable names and numerical values differ in

many CCs, while they are not completely matched.

Therefore, a better method which can detect CCs although

the program is slightly modified. Fig.2 shows the flow of CC

detection including slight program modification. First,

information which has nothing to do with program execution,

such as blanks, comments, or tabs within the program is

deleted. Second, variable names, function names, and

numerical values are replaced with specific characters, and

the basic program structure is clarified. Third, the hash value

is calculated per each line of the program with the basic

program structure clarified. This hash value is calculated by

obtaining and adding ACII codes of each line. Finally,

portions, where the hash value of each line matches more

than n (the value of n is changeable as necessary), are

detected as a CC list.

(2) Creation of MAG and MOG

Programs written by OOPL execute their services based

on combinations of method calls between objects and

674

references of fields. MAG graphically indicates the

relationship between method calls and references of fielsds.

MAG expresses the relationship of method calls in the

directed line from the calling source to the calling destination,

while expressing the field reference relationship in the

directed line from the reference source to the reference

destination. MOG graphically indicates overwritten methods

accompanied by class inheritance, implementation of

methods which are defined abstractly, and fields

encapsulation. MOG expresses overwritten methods in the

directed line from the method to be overwritten to the

behavior to be overwritten. Fig. 3 shows the corresponding

relationship between MAG and MOG. The program shown

in Fig. 3 (a) has the following classes: BaseClass,

DerivedClass, and Application. In addition, the BaseClass

class has the operation methods, method1(int x) and

method1(String x), the DerivedClass class has method1(int

x), and the Application class has method2() and method3().

The method2() method (call source) of this program calls the

call destination, method1(String x) of the DerivedClass class,

while the method3() method (call source) calls the call

destination, method1(int x) of the BaseClass class. Fig. 3 (b)

shows MAG where these relationships are connected with

directed lines. Next, the method1(int x) method of the

DerivedClass class (operation to overwrite) overwrites the

method 1(int x) method of the BaseClass class (operation to

be overwritten). Fig.3 (c) shows MOG where these

relationships are connected with directed lines.

3.2. Determination of Refactoring Formats (STEP 2)

This section describes the operation of STEP 2. This

operation consists of the determination of CC pairs

which conduct refactoring and the determination of CC

pairs. CC pairs are determined simply by choosing CC

pairs. Therefore, the determination of refactoring

formats is described below.

Refactoring formats are determined based on

refactoring information which is obtained by analyzing

the program part of CC pairs under refactoring.

Refactoring information consists of the start line of the

CC, the end line, the number of external variables used,

the number of methods called, and the parent class.

The start and end lines of the CC are obtained from the

CC list. The number of external variables, the number

of methods called, and the parent class are obtained

from MAG and MOG. Table1 indicates the refactoring

formats treated in this research and the judging criteria

for applying these formats.

3.3. Implementation of Refactoring (STEP 3)

STEP 3 modifies the program based on refactoring

information, after which this process creates the MAG and

MOG of the program which has been modified. Program

modification is done manually. The creation of the MAG

and MOG of the program which has been modified is the

same operation as that described in section 3.1 (2).

Fig.3 Relationships between MAG and MOG

Fig.4 Sample of Change Impact Analysis

3.4. Implementation of Impact Analysis (STEP 4)

This section described the operation STEP 4. Impact

analysis is a method to identify a scope of a program

under the impact of modification. Scopes under impact

are clarified in the unit of classes, members, or lines. This

research clarifies a program scope which needs to be

verified in two stages due to program modification. The

first stage clarifies a program scope under the impact of

program modification in the unit of members, while the

second stage clarifies a program scope under the impact

of program modification in the unit of lines in methods.

The member-based impact analysis which is the first

stage clarifies the scope under impact in the unit of

members by clarifying differences in MAG and MOG

between before and after program modification. First, the

relationship of access to members which appeared and

vanished due to program modification is extracted based

on comparison of MAG before and after program

modification. In a similar manner, the override

relationship of methods which appeared and vanished due

to program modification is then extracted based on

675

comparison of MOG before and after program

modification. These differences become members which

are under impact of program modification. The following

shows an example of change in a MAG. Fig.4(a) shows

the MAG before modification and the output result of this

MAG by using the MAG/MOG creation tool (described

later in 3.5), and Fig.4(b) shows the MAG after

modification and the output result of this MAG by using

the MAG/MOG creation tool. This program consists of

the test1 class, the test2 class, and the sample class. The

test1 class has the operation methods, subclass, square

root, and main, the test2 class has the add method, and

the sample class have the multiply and square methods.

In addition, the sub method of the test1 class before

modification accesses to the multiply method of the

sample class, the main method of the test1 class accesses

the add method of the test2 class, and the square method

of the sample class access to the square root method of

the test1 class. On the other hand, after modification, the

sub method of the test1 class accesses to the add method

of the test2 class, the main method of the test1 class

accesses to the add method of the test2 class, and the

square method of the sample class accesses to the square

root method of the test1 class. Comparison of Fig.4(a)

and (b), shows that access of the sub method of the test1

class to the multiply method of the sample class vanishes,

while the access of the sub method of the test1 class to

the add method of the test2 class increases. This status is

shown by the shaded portion in Fig.4. This portion

becomes members which are affected by modification.

The second stage, sentence-based impact analysis,

clarifies those lines under impact by using static program

slicing for the affected portions extracted in the first stage.

Static program slicing is a method which focuses on any

variable in the program in order to extract only program

portions (lines) necessary for calculating the variable

focused on. These program portions are referred to as

static slices. Where any input data is given to static slices,

the same calculation result as the original program is

obtained for the variables focused on. Static slices are

created by tracing the dependency relationship of data

and control between the program lines in the member

inversely within the variable calculation process. Fig.5

shows an example of static slice extraction procedure

with the focus on the program argument, variable x. The

figures listed on the left side of Fig.5 indicate the number

of program lines. First, the variable x in the 7th line of the

original program is focused on. This variable x in the 7th

line is calculated by using the variable y in the 5th line.

The variable x is initialized in the 1st line. On the other

hand, the variable y in the 5th line is calculated in the 4th

line. This variable y in the 4th line is initialized in the 2nd

line. According to the results above, as shown in the right

side of Fig.5, the static slices for the variable x in the 7th

line are the lines 1, 2, 4, 5, and 7.

3.5. Creation of a Refactoring Support Tool

This chapter describes a tool that supports the operation of

each STEP in Fig.1. This prototype is composed of the

following subtools: CC detection tool, MAG/MOG creation

tool, refactoring format proposal tool, and impact analysis

tool. Each subtool is explained as follows:

The CC detection tool detects CCs containing slight

changes made within a program. This tool is used by STEP 1

in Fig.1. The input of this tool is a program, while the output

is a CC list. Fig.6 shows an example of a CC list output by

the CC detection tool. The CC list contains the paths of all

files where CCs exist, the start/end lines of CCs of all CCs.

Table1 Refactoring formats and their judging criteria

Refactoring format Refactoring method Judging criteria

Extract Method Integrates those operations (CCs)

overlapping within the same class by

creating a new method.

CCs exist within the same class.

One CC exists (there are a few CCs).

Pull Up Method Integrates those operations (CCs) overlapping

within the same subclass having the same super

class by creating a new operation in the super

class.

Has the same super class.

CCs exist within the subclass.

Extract Class Integrates multiple operations (CCs) overlapping

within the same class by creating a new class.

CCs exist within the same class.

Multiple CCs exist (there is a number of CCs).

Extract Super Class Integrates multiple operations (CCs) overlapping

within the class without having the same super

class by creating a new parent class. The original

class becomes the subclass of the super class.

Does not have the same super class.

Multiple overlapping CCs exist within the

class.

Parameterized Method Integrates those overlapping operations

within the same class, where only the values

to be used within operations differ, by

making the values to be used one argument.

CCs exist within the same class.

Multiple CCs exist (there is a number of CCs).

Values to be used within CCs differ.

Pull Up File Integrates multiple subclasses with the same

super class having the same property by

giving the super class properties.

Has the same super class.

Overlapping properties exist within the

subclass.

676

Fig.5 Sample of Static Program Slicing

Fig.6 Example of Code Clone List

Fig.7 Example of Refactoring Information

The MAG/MOG creation tools creates the MAG and MOG

of a program. This tool is used by STEPS 1 and 3 in Fig. 1.

The input of this tool is a program, while the output is MAG

and MOG. The lower of Fig. 4 shows an example of the

MAG as the output of the MAG/MOG creation tool. MAG

contains classes and members to which the members of the

call source belong, and classes and methods to which the

members of the call destination belong. MOG contains

overwriting methods and methods to be overwritten. The

refactoring format proposal tool creates refactoring

information of CC pairs selected. This tool is used by STEP

2 in Fig. 1. The input of this tool is a program, a CC list (one

CC pair selected from the CC list), MAG and MOG, while

the output is the refactoring format. Refactoring information

contains the total number of CC lines, the number of

externally defined variables used, the parent class, and the

number of method calls. Fig.7 indicates refactoring

information as the output of the refactoring format proposal

tool. The impact analysis tool clarifies program scopes

which are under impact of program modification based on

the unit of members and lines from the program including

MAG and MOG before and after program modification.

This tool is used by STEP 4 in Fig. 1. The input of this tool is

a modified program and MAG/MOG before and after

modification, while the output is the impact scope. The

lower right of Fig. 4 shows the impact scope as the output of

the impact analysis tool.

4. EVALUATION OF THE PROPOSED

METHOD AND TOOL

This section describes the results of evaluation for the

proposed method and the tool. The evaluation was

conducted by two engineers who have same level of

skills and experiences (they had 4-6 years programming

experiences using OOPL and attended a two-days

lecture for refactoring).

An evaluation procedure is described in this

paragraph. First, one engineer (engineer A) conducted

refactoring for prepared programs using the proposed

method and the tool. Next, other engineer (engineer B)

conducted refactoring for prepared programs without

the proposed method and the tool. Last, three engineers

(engineer A, engineer B, and engineer C who had same

skills and experiences) compared their refactoring

results, and evaluated adequacy of refactoring.

Test cases are described in this paragraph. Left side in

Table 2 shows a list of test cases. Test case 1 - 5 is used

for the evaluation of refactoring that single refactoring

format is applied. Test case 6 - 8 is used for the

evaluation of refactoring that plural refactoring formats

are applied simultaneously. This is because that there

were reports that the most CC could be applied "pull up

+ parameterized method" and "extract method +

parameterized method", and those CC was added some

slight modifications, such as changing variable names

and constant values [7]. Table 2 shows the test results.

Regarding the test case 1 to 5, engineer A and B could

conduct refactoring to all test cases appropriately.

Regarding the test case 6 to 8, engineer A could

conduct refactoring to all test cases appropriately.

While, engineer B could not conduct refactoring of the

test case 6. Engineer B applied only "parameterized

method" for the test case 6, because Engineer B missed

to apply "pull up method." Consequently, appropriate

refactoring had not done.

Table 2 List of test cases

No Test Case Eng. A Eng.B

1 Pull up field Success Success

2 Pull up method Success Success

3 Extract method Success Success

4 Extract super class Success Success

5 Parameterized method Success Success

6 Parameterized method +

Pull up method

Success Fail

7 Parameterized method +

Extract method

Success Success

8 Parameterized method +

Extract super class

Success Success

677

Fig.8 Program Structure of Test Case 6

Fig.9 Program List of Methods

Fig.10 Refactoring Results (Engineer B)

Fig. 11 Refactoring Results (Engineer A)

Here, refactoring results for test case 6 is described.

Fig.8 shows program structure (class diagram) given in

test case 6. This program has four classes, such as M,

C1, C2, and C3. Class M has main method. And super

class C1 has subclass C2 and C3. Method_A, method_B,

method_C and method_D are CCs, and the name of

variables in those methods and the values of constants

were slightly changed. Fig.9 shows the programs of

method_A, method_B, method_C and method_D. Those

four methods have same operation, such as the methods

divide a value of argument by 2, and return "odd" when

the remainder of the division is one or return "even"

when the remainder of the division is zero.

Accordingly, method_A and method_B can be

aggregated as method_AB in subclass C2 using

parameterized method. Likewise, method_C and

method_d can be aggregated as method_CD in subclass

C3. The engineer B conducted only those operations.

Fig.10 shows a refactoring result conducted by the

engineer B. While, merhood_AB and method_CD are

aggregated to method_ABCD in super class C1 by using

"pull up method." Fig.11 shows a refactoring result

conducted by the engineer A.

From the above mentioned results, we could confirm

the appropriate CC detection and aggregation were

conducted using the proposed method and tool.

5. CONCLUSION

 In this research, we proposed a program refactoring

method based on CC detection and impact analysis, while

producing a support tool. Applying the proposed method and

the tool to the program, we confirmed that our method and

tool were able to detect CCs within a program and aggregate

the program by applying the proposed refactoring formats.

As a result, we successfully achieved a program with a

structure where the program can easily be modified based on

the basic pattern of programming. Furthermore, we can

expect that applying our proposed method immediately after

the program has been developed and integrating CCs can

enhance efficiency in subsequent program modification.

 The future issues include how to judge the refactoring

format to be applied where multiple refactoring formats can

be applied. Moreover, we are going to make refactoring

available for wide variety of programs.

REFERENCES

[1] B. Baker, "A Program for Identifying

Duplicated Code", Proc. Of Computing Science

and Statistics: 24th Symposium on the

Interface, 24, pp.49-57, Mar.1992.

[2] E. Gamma et al., Design Patterns - Elements

of Reusable Object-Oriented Software -, Addison-

Wesley, 1995.

[3] M. Fowler et al., Refactoring: Improving The

Design of Existing Code, Addison-Wesley, 1999.

[4] K. Inoue et al., "Identifying Refactoring

Opportunities for Removing Code Clones with A

Metrics-based Approach", Journal of Software

Maintenance and Evolution: Research and Practice,

vol.20, pp.435–461, 2008.

[5] D. Kung et al., "Class Firewall, Test Order,

and Regression Testing of Object-Oriented

Programs" Journal of Object-Oriented

Programming, pp. 51-65, 1995.

[6] Y. Jang et al., "Change Impact Analysis for A

Class Hierarchy", Software Engineering

Conference, pp.304-311, 1998.

[7] Y. Higo et al., "Refactoring Support

Environment Based on Code Clone Analysis",

Transaction of Institute of Electronics,

Information, and Communication Engineers,

Vol.J-88-D-I, pp.186-195, 2005.

678

