
 
Complex Systems Informatics and Modeling Quarterly  

CSIMQ, Issue 8, September/October 2016, Pages 1–14 

Published online by RTU Press, https://csimq-journals.rtu.lv 

https://doi.org/10.7250/csimq.2016-8.01 

ISSN: 2255-9922 online 

 

 

A Method for Software Requirement Volatility Analysis Using QFD

Yunarso Anang1,2, Masakazu Takahashi1 and Yoshimichi Watanabe1

1University of Yamanashi, Interdisciplinary Graduate School of Medicine and
Engineering, 4-3-11 Takeda, Kofu 400-8511, Japan

2Institute of Statistics, Department of Computational Statistics, Jl. Otto
Iskandardinata No. 64C, Jakarta Timur 13330, Indonesia

{g14dma01, mtakahashi, nabe}@yamanashi.ac.jp, anang@stis.ac.id

Abstract. Changes of software requirements are inevitable during the
development life cycle. Rather than avoiding the circumstance, it is easier
to just accept it and find a way to anticipate those changes. This paper
proposes a method to analyze the volatility of requirement by using the
Quality Function Deployment (QFD) method and the introduced degree of
volatility. Customer requirements are deployed to software functions and
subsequently to architectural design elements. And then, after determining
the potential for changes of the design elements, the degree of volatility
of the software requirements is calculated. In this paper the method is
described using a flow diagram and illustrated using a simple example, and
is evaluated using a case study.
Keywords: Software requirement volatility, quality function deployment,
software function, architectural design, potential for changes, degree of
volatility.

1 Introduction

Software development life cycle is getting tight in the matter of time to delivery of the software
product. Customers demand shorter development life cycles. To accelerate the development life
cycle of a software product, the incremental development life cycles such as spiral and agile have
been introduced. Customers are able to see and use part of the functionalities of the final product at
a very early time. However, due to the immaturity of the software specification during the life
cycle of these models, customer requirements might be changed and the specification should
be modified to accommodate those changes. Customer requirements are getting mature, and the
software specification is getting mature too, but the internal design and its implementation may
need a big modification in order to accommodate those incremental changes. The consequences
are as follows. The delivery time may become longer, the quality of the software product may be
compromised and the overall cost may grow. Nevertheless, those changes of requirements are
inevitable during the development life cycle [1], [2], [3]. Thus, rather than try to avoid those
changes by obtaining a perfect specification of requirements, it is easier to just accept this potential
for changes as a risk and find a way to anticipate those changes.

Quality Function Deployment (QFD) is a method to clarify the voices of customers, define the
product quality as well as the business functions of the product based on them, and take them
into account in the whole development process [4]. The QFD method has been applied in the
software development process, bridging the gap between software developer and the customer [5],



[6]. The QFD method can be used to transfer the software requirements to software functions and
subsequently to architectural design. However, the QFD method and its current studies do not take
the potential for changes of the requirements into consideration.

This paper proposes a method to analyze the potential for changes of the software requirements.
The growth or changes of requirements during a software development life cycle, or the
requirements’ instability, are referred to as requirement volatility [7]. We consider the potential
for changes of software requirements as the volatility of software requirements. Hereinafter, we
call the values representing the potential for changes as the degree of volatility. We assume
the software requirements are elicited and analyzed using the QFD method. In the proposed
method, the customer requirements are deployed to the software functions and subsequently to
the architectural design elements. Based on architectural design pattern and empirical data from
past software development projects, the degree of volatility of the architectural design elements
is determined. Furthermore, we use those values of the degree of volatility to obtain the degree
of volatility of the software functions and subsequently the customer requirements. Knowing the
degree of volatility of the customer requirements before the actual design and implementation
phases enables us to anticipate the future changes and take some appropriate actions.

In this paper, the method is described using a flow diagram with illustration, and application to
a simple example is provided. Furthermore, we applied the proposed method to a case study of the
development of a software product for a new student online admission system. The system used
as the case study has already been developed and has been operational since the year 2010. After
we applied the method and analyzed the result, we found that the method is capable of supporting
analysis of software requirement volatility in the early phase of software development.

The rest of this paper is organized as follows. Section 2 describes related studies. Section 3
describes the proposed method with application to a simple example. Section 4 describes the case
study we used to evaluate the proposed method. Section 5 describes the discussion of the proposed
method and the result of the case study. Finally, we conclude this paper in Section 6.

2 Related Studies

In this section we describe the studies related to the proposed method which consist of studies
regarding software requirements volatility, studies regarding software architectural design, and
studies regarding quality function deployment especially in the domain of software development.

Software requirements volatility has been studied for quite a long time. Zowghi et al. state
that software development is considered to be a dynamic process where demands for changes
seem to be inevitable [2]. It happens because of the instability and the diversity of requirements
such as the difficulty for stakeholders to reach agreement among themselves on the requirements.
The result, as well as the other studies related to requirement volatility, have been confirmed
in comprehensive literature studies conducted by Dev et al. [1]. Sharif et al. have conducted an
empirical investigation on the impact of changing requirements on software project cost [8]. The
result shows the significant relationship of software development life cycle phase and rework cost
and that, if changes occur in later phases, more rework for the implementation is required. This
result indicates that the earlier the volatility of requirement can be identified, the fewer reworks
will be required. Nurmuliani et al., in their analysis of requirements volatility, found that change
requests occur starting at the design phase [3]. This result indicates that at the design phase where
the software architectural design is decided, it is possible to estimate the volatility of requirements
from the software architectural design elements.

Regarding the assessment of the requirement volatility itself, not much study has been
conducted. Kulk et al. have proposed a mathematical model to identify the requirements volatility
danger zone of IT projects [9]. The model provides a method to calculate a software development
project’s tolerance for volatility. The method is useful to pinpoint a volatile project that encountered

2



excessive requirements growth, but is not meant to be used to assess the volatility of the individual
requirement. Lim et al. proposed a method to classify requirements into shearing layers in order
to anticipate the volatility of the requirements [10]. However among the requirements in the same
layer, it is unclear which is more volatile. The method lacks a metric which can be used to measure
the volatility of individual requirements.

Software architectural design is a process to define software architecture, components, modules,
interfaces and data for the software system, within constraints to satisfy the software requirements
[11]. In this process, rather than developing from scratch, a project can adopt one of the well known
and explicit architectural patterns depending on the domain of the system [12], [13]. Software
architecture can also be selected by reusing the already trusted components providing functions for
a specific domain, business application, user interface, or network and these components provide
the framework for the software application [14].

Software requirement and software architecture are both the important elements to be considered
in software development. However, since many software development organizations often make
choice between them, in practice, requirement engineering and architectural design are intertwined
activities. For instance, they are so reflected in the partial and simplified version of spiral model
proposed as the twin peaks model [15]. The model, e.g. has been used to develop the security
requirements and the architectural specifications concurrently [16]. The study shows that the
requirement elicitation and architectural design activities should not be performed sequentially
in a single phase within the development life cycle. Rather they should be woven together in an
incremental approach. The result also implicitly suggests that a systematic process of requirement
elicitation and architectural design which has the ability to be conducted incrementally should be
developed.

Studies in adapting QFD in the domain of software development have also been conducted for
quite a long time. Haag et al. stated that the adaptation of QFD in software development is a
front-end requirements solicitation technique, adaptable to any software engineering methodology
[17]. Hertzwurm et al. have given an overview of the state of the art of QFD in software
development introducing several applications of QFD in software development [5], [6]. QFD
application in software development bridges a gap between software developer and the customer.
Instead of hoping for concrete targets formulated by customers, development can start with
customer needs and transfer them to concrete product requirements, using the simple means of
a systematic procedure. Gloger et al. described how QFD can be employed in analyzing software
architecture [18]. The paper also indicates the effect of changes to the development time regarding
the architectural design.

3 Proposed Method for Software Requirement Volatility Analysis

QFD provides a method to elicit and analyze customer needs and to transfer them to concrete
product requirements. Furthermore, QFD application in software development provides a
systematic procedure to transfer software requirements to software functions and subsequently
to architectural design. However, due to the fact of requirement volatility, in order to minimize
the impact of occurrence of changes during the development life cycle, we need to anticipate the
changes by determining the requirement volatility in the early phase of software development.

This paper proposes a method to analyze the customer requirements volatility. The customer
requirements are elicited and analyzed using the QFD method. We introduce an indicator for
potential for changes or the volatility of customer requirements that we call the degree of volatility.
The proposed method provides a systematic way to determine the customer requirements volatility
so that the software developer can identify and anticipate the customer requirements which have a
higher potential for changes in the future.

3



The rationale of the proposed method is as follows. From the related studies we found that, it
is difficult to identify the degree of volatility from the customer requirements themselves until the
design phase where the software architectural design is decided. Considering that, if we could
determine the degree of volatility of the architectural design elements, then by extracting the
architectural design elements of the software product using the deployment tables from the QFD
method, we could estimate the degree of volatility of the customer requirements from the degree
of volatility of the architectural design elements.

Figure 1 shows the flow diagram of the proposed method, and Figure 2 shows an illustration
of the deployment tables, which are used in QFD, and the calculation of the value of the degree
of volatility as the product of the proposed method. We have modified the deployment tables so
that the degree of volatility can be calculated. The proposed method consists of 5 major steps. We
describe each of these steps in the following sections.

Customer 
requirements

Derive software 
functions

Software functions

Relationships of 
customer 

requirements and 
software functions

Decide the architectural 
design elements

Architectural design 
elements

Relationships of 
software functions 
and architectural 
design elements

Determine the degree 
of volatility of 

architectural design 
elements

Architectural design 
pattern; empirical 
data of function 

change

Degree of volatility 
(of architectural 

design elements)

Calculate the degree of 
volatility of software 

functions

Degree of volatility 
(of software 
functions)

Calculate the degree of 
volatility of software 

functions

Degree of volatility 
(of customer 

requirements)

STEP 1 STEP 2

STEP 3

STEP 4 STEP 5

Figure 1. A diagram showing the steps to conduct the customer requirements volatility analysis using the
proposed method

3.1 STEP 1: Deployment of the Software Functions from the Customer Requirements

In STEP 1, from the given customer requirements, we derive the software functions which are
needed to fulfill the customer requirements. In this step, we also define how strong the customer
requirement is related to the derived software function. We decide how strong the relationship
is by considering whether the software function has the main functionality or it just provides a
supporting functionality, where the former will have a stronger relationship than the latter. The
product of this step is the list of software functions and the relationships between the customer
requirements and the software functions.

The input of this step is the customer requirements. For the purpose of simplicity, we assume
we already have the list of customer requirements broken down into the lowest level of abstraction
where we could then determine the software functions needed to fulfill the requirement. The
guidance to derive the software functions from the customer requirements and their relationships
is as follows:

• For each customer requirement, decide what software functions are needed to fulfill the
requirement;

4



• One customer requirement may need more than one software function;
• But, each customer requirement must have at least one software function related to it;
• Different customer requirements may use the same software functions;
• Decide how strong the customer requirement is related to the derived software function. The

relationship is represented using a scale of numbers or symbols. In this paper, we use the
symbol of “+”, “o” and “-” which each represents a strong, neutral or weak relationship, and
has the value of 5, 3 and 1 respectively.

△

◎cu
st

om
er

re
qu

ire
m

en
ts

software
functions

△

○

1
3
4

degree
of volatility

2.
3 … … 4.
5 … 1.
3

…
1.3
…
4.2
…

degree 
of volatility

1

4

5

Derive the software functions from the customer 
requirements. Put symbols in the table representing how 
strong both elements are related.

1

5

architectural
design

elements2

Decide the architectural design element(s) of the sofware 
functions. Put symbols in the table representing how strong 
the functions are related in the architectural design element.

2

Calculate the degree of volatility of software functions from 
the degree of volatitliy of architectural design elements.

4

Calculate the degree of volatility of customer requirements 
from the degree of volatility of software functions.

5

symbols and numbers within the table are just for illustration

3

Determine the degree of volatility of the architectural design 
elements.

3

Figure 2. An illustration of the deployment tables and the calculation as the product of the proposed method

The output of this step is a two-dimensional table as illustrated in Figure 2. In the rows we place
the customer requirements, in the columns we place the software functions, and within the table
we place the relationships between those items.

The example of the two-dimensional table is shown in Table 1(a), which is composed of six
customer requirements, r1 to r6, and seven software functions, f1 to f7, with their relationships
within the table.

Table 1. A sample of obtaining the degree of volatility of customer requirements

(a)

f1 f2 f3 f4 f5 f6 f7
r1 + - 80  9.5  
r2 + - 130  15.4  
r3 o + - 115  13.6  
r4 + o 170  20.1  
r5 + + - 275  32.5  
r6 + - o 75  8.9  

Degree of
Volatility

5 25 15 25 5 25 15

Degree of
Volatility ratio (%)

4.
3

21
.7

13
.0

21
.7 4.
3

21
.7

13
.0

Software functions

C
us

to
m

er
re

qu
ire

m
en

ts

De
gr

ee
 o

f
Vo

la
til

ity

De
gr

ee
 o

f
Vo

la
til

ity
 ra

tio
 (%

)

(b)

Da
ta

 s
ou

rc
e

Do
m

ai
n

Pr
es

en
ta

tio
n

f1 + 5  4.3
f2 + 25  21.7
f3 + 15  13.0
f4 + 25  21.7
f5 + 5  4.3
f6 + 25  21.7
f7 + 15  13.0

Degree of
Volatility

1 3 5

Architectural
design elements

De
gr

ee
 o

f V
ol

at
ilit

y

De
gr

ee
 o

f V
ol

at
ilit

y
ra

tio
 (%

)

So
ftw

ar
e 

fu
nc

tio
ns

5



3.2 STEP 2: Deployment of the Architectural Design Elements from the Software
Functions

STEP 2 decides what are the architectural design elements which fit for each software function, as
well as how strong is the cohesion of each function to the architectural design element. The product
of this step is the list of architectural design elements and the relationships between software
functions and architectural design elements.

In this step, we need to decide which architectural design pattern is used for the software. In
this paper, we use the principal 3-layer architecture which consists of three layers: presentation,
domain and data source [19]. The presentation layer provides functionalities to display information
and capturing user input; the domain layer provides functionalities in the business logic; and the
data source layer provides functionalities to communicate with the back-end services. This layering
concept helps to structure applications that can be decomposed into groups of subtasks in which
each group of subtasks is at a particular level of abstraction [12]. Layers are sorted vertically, from
the lowest level of abstraction at the bottom to the highest level of abstraction at the top. The
lower layer also has less potential for changes than those above it. In the 3-layer architecture, the
presentation layer is on the top with the highest potential for changes and the data source layer is
on the bottom with the lowest potential for changes. Previously, we have proposed a method of
applying the layering concept to the software requirements analysis and architectural design [20].
We consider these layers as the elements of the architectural design to which the software functions
will be mapped.

The input of this step is the list of software functions. The guidance to derive the architectural
design elements from the software functions and their relationships is as follows:

• Map each of the software functions to the architectural design elements;
• Each software function may be related to more than one architectural design element;
• But, each software function must have at least one architectural design element related to it;
• Decide how the software function is related to the architectural design element: does a software

function have high or low cohesion within a given architectural design element. As in the
software functions deployment table described in 3.1, the relationship is represented using a
scale of numbers or symbols. In this paper, we use the symbol of “+”, “o” and “-” which each
represents strong, neutral and weak relationship, and has the value of 5, 3 and 1 respectively.

The output of this step is a two-dimensional table as illustrated in Figure 2. In the columns we
place the software functions, in the rows we place the architectural design elements, and within the
table we place the relationships between those items.

The example of the two-dimensional table is shown in Table 1(b), which is composed of seven
software functions, f1 to f7, and three architectural design elements, data source, domain and
presentation, with their relationships within the table.

3.3 STEP 3: Determination of the Degree of Volatility of Architectural Design Elements

In STEP 3, for each architectural design element, we determine the degree of volatility, based
on the architectural design pattern or based on empirical data of function change from the past
software development projects. Again, we use scale numbers to represent the degree of volatility.
In this paper, we use scale numbers from 1 to 5, where 1 represents the lowest degree of volatility
and 5 the highest.

As illustrated in Figure 2, we place the values of the degree of volatility of architectural design
elements in the rows of the architectural design elements deployment table.

As mentioned in 3.2, we use the data source, domain, and presentation as the architectural
design elements. We determine the degree of volatility to each of these elements according to how
big is the chance for changes. For the 3-layer architecture, the data source is the foundation of the

6



architecture. Changes in this layer will impact on other layers above it. To minimize the impact of
changes, changes in this layer (after the development at other layers has started) should be avoided
or should be minimized. It implies the potential for changes or the degree of volatility of this
data source element should be low. The other elements will have a higher degree of volatility. In
this paper, we determine the degree of volatility of these data source, domain, and presentation
elements as 1, 3, and 5 respectively as shown in the example in Table 1(b).

3.4 STEP 4: Calculation of the Degree of Volatility of Software Functions

After we have the values of the degree of volatility of each architectural design element, then in
STEP 4, we calculate the values of the degree of volatility and their ratios for each of the software
functions. The calculation is conducted by using the values representing the relationships between
the software functions and the architectural design elements. The calculation is conducted in two
steps as described below:

1. Calculate the value of the degree of volatility of the software functions using Equation 1. If pa i

is the value of the degree of volatility of the architectural design element ai, and the relationship
between the software function fj and the architectural design element ai is fa ij , then the value
of the degree of volatility pf j for the software function fj can be calculated using the equation,
where an is the number of architectural design elements.

pf j =
an∑
i=1

pa ifa ij (1)

2. Calculate the ratio of the value of the degree of volatility of the software function using
Equation 2. If pf j is the value of the degree of volatility of the software function fj , then
the ratio of the degree of volatility rpf j of the software function fj can be calculated using the
equation, where fn is the number of architectural design elements.

rpf j =
pf j∑fn
j=1 pf j

(2)

We may use the ratio in percentage by multiplying the ratio by 100.
This step may be skipped if we just want to calculate the degree of volatility of the
requirements.

For instance, from the example shown in Table 1(b), where the “+” symbol has the value of
5, we can calculate the degree of volatility pf1 of the software function f1 using Equation 1:
pf1 = 1× 5 + 3× 0 + 5× 0 = 5, and with the same manner for the degree of volatility pf2 of the
software function f2: pf2 = 1× 0+3× 0+5× 5 = 25. Furthermore, after we finished calculating
all the software functions’ degree of volatility, we can calculate the ratio of the value of the degree
of volatility of each of the software functions using Equation 2.

3.5 STEP 5: Calculation of the Degree of Volatility of Customer Requirements

In the last step, STEP 5, we calculate the values of the degree of volatility and their ratios for each
of the customer requirements. The calculation is based on the values of the degree of volatility of
the software functions obtained in the Step 4. The calculation is conducted by using the values
representing the relationships between the customer requirements and the software functions.

7



The calculation is conducted in two steps as described below:

1. Calculate the value of the degree of volatility of the customer requirements using Equation 3.
If pf j is the value of the degree of volatility of the software function fj , and the relationship
between the customer requirement ri and the software function fj is rf ij , then the value of the
degree of volatility pr i for the customer requirement ri can be calculated using the equation,
where fn is the number of software functions.

pr i =

fn∑
j=1

pf jrf ij (3)

2. Calculate the ratio of the value of the degree of volatility of the customer requirement using
Equation 4. If pr i is the value of the degree of volatility of customer requirement ri, then the
ratio of the degree of volatility rpr i of customer requirement ri can be calculated using the
equation, where rn is the number of customer requirements.

rpr i =
pr i∑rn
j=1 pr j

(4)

We may use the ratio as a percentage by multiplying the ratio by 100.

For instance, from the example showed in Table 1(a), we can calculate the degree of volatility
pr1 of the customer requirement r1 using Equation 3: pr1 = 5×0+25×0+15×5+25×0+5×
1+25×0+15×0 = 80, and with the same manner for the degree of volatility pr2 of the customer
requirement r2: pr2 = 5×0+25×5+15×0+25×0+5×1+25×0+15×0 = 130. Furthermore,
after we finished calculating all the customer requirements’ degree of volatility, we calculate the
ratio of the value of the degree of volatility of each of the customer requirements using Equation 4
with the result as shown in the table.

After we obtain the degree of volatility of customer requirements (and the ratio of the degree of
volatility), then we can use these values to analyze the volatility of the customer requirements. If
the ratio is low, then the requirement may have a low potential for changes during the development
process. We may design the implementation of this requirement using a strict architectural design.
For instance, we may choose an architectural design which focuses on the performance rather than
the extensibility using a high performance implementation design. But if the ratio is high, then it
might be better to design the implementation of this requirement using a loose architectural design
because the potential for changes in the future is high. For instance, the extensibility should be
considered first instead of the performance when making a decision on the implementation design.
Or, if the ratio is high, we can determine that the requirement needs to be clarified into more
detailed requirements to anticipate changes in the future.

From the example shown in Table 1(a), we can see that the requirement r4 and r5 have a high
ratio of the degree of volatility while the requirement r1 and r6 have a low ratio of the degree of
volatility.

4 A Case Study: New Student Online Admission System

In this section, we describe the application of the proposed method in a case study. The software we
chose in this case study is a software system used in new student admission at Institute of Statistics
(or Sekolah Tinggi Ilmu Statistik in local language), a college located in Jakarta Indonesia. The
institute is under the management of Statistics Indonesia, a government agency responsible for
the official statistics in Indonesia. The recruitment of new students is conducted once every year,
targeting high school graduates from all over the country. Until the year 2009, the application for

8



admission was conducted manually. The applicant had to come to the nearest office of Statistics
Indonesia located in the capital city of each province where the institute receives and processes
the applications. Indonesia is a big country (about 250 million inhabitants) and the number of
applicants is growing every year. To reduce the overall cost of the admission process and to give
more opportunity to those who want to apply for admission, an online admission system has been
proposed, developed and then started operating in the year 2010. We applied the proposed method
to the requirements analysis of the admission system and evaluated the result of this method by
investigating the real analysis, design, and implementation of the developed system.
Before we started the first step of the proposed method, we prepared the customer requirements
by conducting the deployment of the customer requirements in two levels of abstraction. Table 2
shows the deployment of the customer requirements. We use the list in level 2 of the customer
requirements as the input of the proposed method.

Table 2. Deployment of the customer requirements (excerpt)

CR ID Level 1 CR ID Level 2
CR1.1 Applicant enters his/her form online.
CR1.2 Applicant will get confirmation after registration online.

CR2 Prerequisites for application are validated online before submitting
the application.

CR2.1 Prerequisites for application are validated online before
submitting the application.

CR3.1 Applicant pays the submission fee via bank.
CR3.2 Application data will be reflected as payed after the payment.

CR4 Applicant will get his/her admission ticket, online, after his/her
payment for the submission fee is confirmed.

CR4.1 Applicant will get his/her admission ticket, online, after his/her
payment for the submission fee is confirmed.

CR5 Applicant will get the examination's result online on the scheduled
date.

CR5.1 Applicant will get the examination's result online on the
scheduled date.

CR6 Organizer can monitor online in a realtime the progress of
submission.

CR6.1 Organizer can monitor online in a realtime the progress of
submission.

CR7 Organizer can modify the individual data when requested by the
applicant.

CR7.1 Organizer can modify the individual data when requested by the
applicant.

CR8 Applicant can modify his/her own data before the payment for the
submission fee is made.

CR8.1 Applicant can modify his/her own data before the payment for
the submission fee is made.

CR9 Organizer enters the result of examination into the applicant's data
by batch processing.

CR9.1 Organizer enters the result of examination into the applicant's
data by batch processing.

CR10 Organizer can get or print the list of all applicants. CR10.1 Organizer can get or print the list of all applicants.
CR11 Organizer can get or print the list of all successful candidates. CR11.1 Organizer can get or print the list of all successful candidates.

CR1 Applicant enters his/her form online and can get confirmation right
after.

CR3 Applicant pays the submission fee via bank and the bank's payment
status will be automatically reflected to the application data.

Customer requirements

The first step, STEP 1, is to use the list of customer requirements and derive the software
functions from them. We divide the product of this step into two tables, the deployment table
of the software functions from the customer requirements and the table about the relationships
between the customer requirements and the software functions. The former table is shown in Table
3 and the latter table is shown in Table 4. In Table 4, the software functions are shown using their
ID which is shown in Table 3.

Table 3. Deployment of the software functions from the customer requirements (excerpt)

CR ID Level 2 SF ID Software functions
SF1.1.1 Applicant verifies his/her email address.
SF1.1.2 System sends email confirmation that contains the link for registration.
SF1.1.3 Applicant uses the link included in the confirmation email and the system

displays the content of the registration form.
SF1.1.4 Applicant enters/edits the form online.
SF1.1.5 Applicant submits his/her data.
SF1.2.1 After registration, there is a confirmation displayed to the applicant.
SF1.2.2 After registration, system sends a confirmation via email.
SF2.1.1 System will validate the form entry using prerequisite rules during the entry.
SF2.1.2 System will validate, again in the server, when applicant sends the form entry

to the server.
SF2.1.3 If the validation failed, applicant will get notice and will be able to continue the

entry.
SF3.1.1 After submitting the entry form, system will generate a token for bank payment

and send it along with confirmation email.
SF3.1.2 Applicant pays the submission fee via bank (bank system's functionality ).

CR3.2 Application data will be reflected as payed after the payment. SF3.2.1 System will communicate with the bank to receive the payment information.
SF4.1.1 Applicant logins into his/her registration page.
SF4.1.2 Application downloads his/her admission ticket.
SF4.1.1 Applicant logins into his/her registration page.
SF5.1.1 Applicant will see the examination's result.
SF6.1.1 Organizer logins into the special site for organizer.
SF6.1.2 Organizer views the list of submissions.
SF6.1.1 Organizer logins into the special site for organizer.
SF7.1.1 Organizer selects the applicant by entering his/her submission number.
SF7.1.2 Organizer edits the applicant's data.
SF7.1.3 Organizer submits the applicant's data.
SF4.1.1 Applicant logins into his/her registration page.
SF8.1.2 Applicant views his/her data.
SF1.1.4 Applicant enters/edits the form online.
SF1.1.5 Applicant submits his/her data.

CR9.1 Organizer enters the result of examination into the applicant's data by
batch processing.

SF9.1.1 Organizer, with its IT staff, imports the result of examination into the database.

SF6.1.1 Organizer logins into the special site for organizer.
SF10.1.1 Organizer downloads the list of all applicants.
SF6.1.1 Organizer logins into the special site for organizer.
SF11.1.1 Organizer downloads the list of all successful candidates.

CR11.1 Organizer can get or print the list of all successful candidates.

CR8.1 Applicant can modify his/her own data before the payment for the
submission fee is made.

CR10.1 Organizer can get or print the list of all applicants.

CR6.1 Organizer can monitor online in a realtime the progress of submission.

CR7.1 Organizer can modify the individual data when requested by the
applicant.

CR4.1 Applicant will get his/her admission ticket, online, after his/her payment
for the submission fee is confirmed.

CR5.1 Applicant will get the examination's result online on the scheduled date.

CR2.1 Prerequisites for application are validated online before submitting the
application.

CR3.1 Applicant pays the submission fee via bank.

Software functionsCustomer requirements

CR1.1 Applicant enters his/her form online.

CR1.2 Applicant will get confirmation after registration online.

From Table 3 we can see that some customer requirements are using the same software
function to fulfill them. For instance, the CR1.1 “Applicant enters his/her form online” and CR8.1

9



Table 4. Relationships between the customer requirements and the software functions (excerpt)

CR ID Level 2

SF
1.

1.
1

SF
1.

1.
2

SF
1.

1.
3

SF
1.

1.
4

SF
1.

1.
5

SF
1.

2.
1

SF
1.

2.
2

SF
2.

1.
1

SF
2.

1.
2

SF
2.

1.
3

SF
3.

1.
1

SF
3.

1.
2

SF
3.

2.
1

SF
4.

1.
1

SF
4.

1.
2

SF
5.

1.
1

SF
6.

1.
1

SF
6.

1.
2

SF
7.

1.
1

SF
7.

1.
2

SF
7.

1.
3

SF
8.

1.
2

SF
9.

1.
1

SF
10

.1
.1

SF
11

.1
.1

CR1.1 Applicant enters his/her form online. + + + + +
CR1.2 Applicant will get confirmation after registration

online. + +

CR2.1 Prerequisites for application are validated online
before submitting the application. + + +

CR3.1 Applicant pays the submission fee via bank. + -
CR3.2 Application data will be reflected as payed after the

payment. -

CR4.1 Applicant will get his/her admission ticket, online,
after his/her payment for the submission fee is
confirmed.

o +

CR5.1 Applicant will get the examination's result online on
the scheduled date. o +

CR6.1 Organizer can monitor online in a realtime the
progress of submission. o +

CR7.1 Organizer can modify the individual data when
requested by the applicant. o o + +

CR8.1 Applicant can modify his/her own data before the
payment for the submission fee is made. + + o +

CR9.1 Organizer enters the result of examination into the
applicant's data by batch processing. -

CR10.1 Organizer can get or print the list of all applicants. o +
CR11.1 Organizer can get or print the list of all successful

candidates. o +

Customer requirements Software functions

“Applicant can modify his/her own data before the payment of the submission fee is made”,
because both requirements are involving the function to edit the form online, they are using the
same software function, the SF1.1.4 “Applicant enters/edits the form online”. In such a case, we
only deploy the function “Applicant enters/edits the form online” once which is coded as SF1.1.4.
In this case study, we have three more software functions which are used to fulfill multiple customer
requirements.

From Table 4 we can see how a customer requirement is related to a software function. As
described before, we use the symbol “+”, “o” and “-” which will be converted to a scale of numbers
as 5, 3 and 1 respectively. For instance, the software function SF4.1.1 which provides functionality
for applicant to login to his/her registration page provides only for supporting functionality because
the applicant will go through other functions which have the main functionality.

The next steps, STEP 2 and STEP 3, are to use the list of software functions and create a mapping
table to the architectural design elements. In this case study, we use the 3-layer architecture which
consists of data source, domain and presentation layers as the elements of the architectural design.
In addition, from the derived software functions, we identify that there is an external system, the
bank payment system, related to the main system. We have decided to treat this external system
as an independent element of the architectural design. Table 5 shows the deployment table of the
software functions to the architectural design elements.

As in the Step 1, the relationship between software functions and architectural design elements is
decided by considering how strong the cohesion of the software function to the architectural design
element is. This consideration is better conducted at the level of program design. For instance, for
the software function SF1.1.1 “Applicant verifies his/her email address” is related to presentation
layer and data source layer. Considering that the implementation of this function in the level of
program design is mainly in the presentation layer, then we decided to give a strong relationship
with the presentation layer. As for software function SF2.1.2 “System will validate, again in the
server, when applicant sends the form entry to the server.”, we decided to give a strong relationship
with the domain layer, because the function is mainly doing logical processing for validation.

Finally the last two steps, STEP 4 and STEP 5, are to use the result of the degree of volatility
of the architectural design elements to obtain the degree of volatility of the software functions and
furthermore the degree of volatility of the customer requirements. Table 6 shows the result of the
calculation of the degree of volatility of the software functions, and Table 7 shows the result of the
calculation of the degree of volatility of the customer requirements.

10



Table 5. Deployment of the software functions to the architectural design elements

SF ID Software functions

Pr
es

en
ta

tio
n

Do
m

ai
n

Da
ta

 s
ou

rc
e

Ex
te

rn
al

SF1.1.1 Applicant verifies his/her email address. + -
SF1.1.2 System sends email confirmation that contains the link for registration. + -
SF1.1.3 Applicant uses the link included in the confirmation email and the system displays the

content of the registration form. + o

SF1.1.4 Applicant enters/edits the form online. +
SF1.1.5 Applicant submits his/her data. - +
SF1.2.1 After registration, there is a confirmation displayed to the applicant. o -
SF1.2.2 After registration, system sends a confirmation via email. + -
SF2.1.1 System will validate the form entry using prerequisite rules during the entry. o +
SF2.1.2 System will validate, again in the server, when applicant sends the form entry to the server. - +
SF2.1.3 If the validation failed, applicant will get notice and will be able to continue the entry. o -
SF3.1.1 After submitting the entry form, system will generate a token for bank payment and send it

along with confirmation email. + -

SF3.1.2 Applicant pays the submission fee via bank (bank system's functionality ). +
SF3.2.1 System will communicate with the bank to receive the payment information. + - o
SF4.1.1 Applicant logins into his/her registration page. - +
SF4.1.2 Application downloads his/her admission ticket. + o
SF5.1.1 Applicant will see the examination's result. o +
SF6.1.1 Organizer logins into the special site for organizer. - o
SF6.1.2 Organizer views the list of submissions. o +
SF7.1.1 Organizer selects the applicant by entering his/her submission number. o +
SF7.1.2 Organizer edits the applicant's data. + o
SF7.1.3 Organizer submits the applicant's data. - +
SF8.1.2 Applicant views his/her data. o +
SF9.1.1 Organizer, with its IT staff, imports the result of examination into the database. +
SF10.1.1 Organizer download the list of all applicants. + o
SF11.1.1 Organizer download the list of all successful candidates. + o

Software functions
Architectural

Design
Elements

Table 6. Calculation of the degree of volatility of the software functions from the degree of volatility of the
architectural design elements (excerpt)

SF ID Software functions

Pr
es

en
ta

tio
n

Do
m

ai
n

Da
ta

 s
ou

rc
e

Ex
te

rn
al

SF1.1.1 Applicant verifies his/her email address. + - 26.0 5.7  
SF1.1.2 System sends email confirmation that contains the link for registration. + - 16.0 3.5  
SF1.1.3 Applicant uses the link included in the confirmation email and the system displays the

content of the registration form. + o 28.0 6.2  

SF1.1.4 Applicant enters/edits the form online. + 25.0 5.5  
SF1.1.5 Applicant submits his/her data. - + 10.0 2.2  
SF1.2.1 After registration, there is a confirmation displayed to the applicant. o - 16.0 3.5  

SF8.1.2 Applicant views his/her data. o + 20.0 4.4  
SF9.1.1 Organizer, with its IT staff, imports the result of examination into the database. + 5.0 1.1  
SF10.1.1 Organizer downloads the list of all applicants. + o 18.0 4.0  
SF11.1.1 Organizer downloads the list of all successful candidates. + o 18.0 4.0  

Degree of Volatility 5 3 1 2

Software functions
Architectural

Design
Elements

D
eg

re
e 

of
 V

ol
at

ili
ty

D
eg

re
e 

of
 V

ol
at

ili
ty

ra
tio

 (%
)

... ... ... ...

From Table 7 we can see which customer requirements are having a low ratio of the degree of
volatility and which ones are having a high ratio of the degree of volatility. For instance, for the
customer requirement CR3.1 “Applicant pays the submission fee via bank.” which has a low ratio
of the degree of volatility, it only mentions that the payment should be possible to be made via
bank, and further specification of the payment does not involve the customer rather than the bank.
As for customer requirements CR10.1 and CR11.1 which provide the functionality to download a
list of applicants or successful candidates and also have a low ratio of the degree of volatility, even
if there is a change in the list, the change does not have a wide impact on the development, because
they only involve the data source and the domain layers. And lastly, for the customer requirements
CR1.1, CR2.1, CR7.1 and CR8.1, which all involve the functionality to enter, edit, and validate
the application online and all have a high ratio of the degree of volatility, they are strongly related
to the presentation layer. Item in the application form might be changed, validation rule might be
changed, and prerequisites might also be changed. Therefore, these customer requirements have
to be investigated deeply, or, in addition, these requirements should be designed and implemented
using loose architectural design in order to anticipate the future changes.

11



Table 7. Calculation of the degree of volatility of the customer requirements from the degree of volatility of
the software functions (excerpt)

CR ID Level 2

SF
1.

1.
1

SF
1.

1.
2

SF
1.

1.
3

SF
1.

1.
4

SF
1.

1.
5

SF
1.

2.
1

SF
1.

2.
2

SF
2.

1.
1

SF
2.

1.
2

SF
2.

1.
3

SF
7.

1.
1

SF
7.

1.
2

SF
7.

1.
3

SF
8.

1.
2

SF
9.

1.
1

SF
10

.1
.1

SF
11

.1
.1

CR1.1 Applicant enters his/her form online. + + + + + 525  22.3  
CR1.2 Applicant will get confirmation after registration

online. + + 160  6.8  

CR2.1 Prerequisites for application are validated online
before submitting the application. + + + 340  14.4  

CR3.1 Applicant pays the submission fee via bank. 90  3.8  
CR3.2 Application data will be reflected as payed after

the payment. 22  0.9  

D
eg

re
e 

of
Vo

la
til

ity
 ra

tio
 (%

)Customer requirements Software functions

D
eg

re
e 

of
Vo

la
til

ity

…

CR6.1 Organizer can monitor online in a realtime the
progress of submission. 124  5.3  

CR7.1 Organizer can modify the individual data when
requested by the applicant. o + + 304  12.9  

CR8.1 Applicant can modify his/her own data before the
payment for the submission fee is made. + + + 305  13.0  

CR9.1 Organizer enters the result of examination into the
applicant's data by batch processing. - 5  0.2  

CR10.1 Organizer can get or print the list of all applicants. + 114  4.8  
CR11.1 Organizer can get or print the list of all successful

candidates. + 114  4.8  

26 16 28 25 10 16 16 30 20 18 20 34 10 20 5 18 18

5.
7

3.
5

6.
2

5.
5

2.
2

3.
5

3.
5

6.
6

4.
4

4.
0

4.
4

7.
5

2.
2

4.
4

1.
1

4.
0

4.
0Degree of Volatility ratio (%)

Degree of Volatility

... ... ...

...

...

...

5 Discussion

In this paper, we proposed a method to conduct analysis of software requirements volatility. By
employing the QFD method, we can transfer the software requirements to the software functions
and subsequently to the architectural design elements. Then, after determining the degree of
volatility of the architectural design elements, the degree of volatility of the software functions
and the degree of volatility of the software requirements can be obtained subsequently.

From the case study, we successfully used the proposed method to obtain the degree of
volatility of the requirements. These values can be used to judge the potential for changes of
an individual requirement and make any necessary countermeasure and/or precaution in order to
anticipate the changes. And because all these steps can be conducted in the early phase of software
development, the requirement which has the potential to change can be assessed even before the
actual implementation or design phases have started.

Compared to Lim et al. proposed method [10], our proposed method also gives the result of the
degree of volatility for the individual requirements, giving more fine-grained anticipation to the
individual requirements change.

However, from the case study, we also learned that in order to obtain the accurate degree of
volatility of the requirements, we need to accurately transfer the requirements to the software
functions and furthermore to the architectural design elements. The relationships among those
items have a big impact on the result of the calculation. The steps should be conducted by a team
incorporating people who understand the customer needs, people who understand how to transfer
the customer needs into the software requirements, people who understand how to transfer the
requirements to software functions, and people who understand the software architecture. The steps
also need to be incrementally repeated in order to obtain a more fine-grained result as suggested in
the twin peaks model.

12



6 Conclusion

A previous study reported that software requirements volatility cannot be determined until the
phase of software design. This indicates that at the design phase where the software architectural
design is decided, it is possible to estimate the requirements volatility from the software
architectural design elements. QFD is used in software development to transfer the software
requirements to software functions and subsequently to architectural design. However, the QFD
method and its current studies do not take the potential for changes into consideration.

In this paper, we proposed a systematic method based on QFD to conduct analysis of software
requirements volatility. By employing the method, we can obtain the degree of volatility of the
software requirements. From the case study we confirmed that the values of the degree of volatility
of the software requirements obtained using the proposed method represent the requirements
volatility. Knowing the requirements volatility in the early phase of software development before
the actual design and implementation phases enables us to anticipate the future changes and take
appropriate action.

The proposed method described in this paper only uses the architectural design elements as the
factor to estimate the volatility of software requirements. We plan to study the impact of change
analysis as well as the risk management to refine the result of the estimation.

References

[1] H. Dev and R. Awasthi, “A Systematic Study of Requirement Volatility During Software Development
Process,” International Journal of Computer Science Issues, vol. 9, no. 2, pp. 527–533, 2012.

[2] D. Zowghi and N. Nurmuliani, “A Study of the Impact of Requirements Volatility on Software
Project Performance,” in Proceedings of the Ninth Asia-Pacific Software Engineering Conference
(APSEC’02), 2002, pp. 3–11. [Online]. Available: https://doi.org/10.1109/APSEC.2002.1182970

[3] N. Nurmuliani, D. Zowghi, and S. Powell, “Analysis of Requirements Volatility During Software
Development Life Cycle,” in Proceedings of the 2004 Australian Software Engineering Conference
(ASWEC’04), 2004, pp. 28–37.

[4] Japanese Standards Association, “JIS Q 9025:2003 Performance Improvement of
Management Systems – Guidelines for Quality Function Deployment,” 2003. [Online].
Available: http://www.webstore.jsa.or.jp/webstore/Com/FlowControl.jsp?lang=en&bunsyoId=JIS+
Q+9025%3A2003&dantaiCd=JIS&status=1&pageNo=0

[5] G. Herzwurm, S. Schockert, and W. Pietsch, “QFD for Customer-Focused Requirements
Engineering,” in Proceedings of the 11th IEEE International Requirements Engineering Conference,
2003, pp. 330–338. [Online]. Available: https://doi.org/10.1109/ICRE.2003.1232777

[6] G. Herzwurm, S. Schockert, and T. Tauterat, “Quality Function Deployment in Software Development
-State-of-the-art-,” in Proceedings of the 21th International Symposium on Quality Function
Deployment, 2015.

[7] S. Ferreira, J. Collofello, D. Shunk, and G. Mackulak, “Understanding the Effects of Requirements
Volatility in Software Engineering by Using Analytical Modeling and Software Process Simulation,”
Journal of Systems and Software, vol. 82, no. 10, pp. 1568–1577, 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2009.03.014

[8] B. Sharif, S. A. Khan, and M. W. Bhatti, “Measuring the Impact of Changing Requirements on
Software Project Cost: An Empirical Investigation,” IJCSI International Journal of Computer Science,
vol. 9, no. 1, pp. 170–174, 2012.

13

https://doi.org/10.1109/APSEC.2002.1182970
http://www.webstore.jsa.or.jp/webstore/Com/FlowControl.jsp?lang=en&bunsyoId=JIS+Q+9025%3A2003&dantaiCd=JIS&status=1&pageNo=0
http://www.webstore.jsa.or.jp/webstore/Com/FlowControl.jsp?lang=en&bunsyoId=JIS+Q+9025%3A2003&dantaiCd=JIS&status=1&pageNo=0
https://doi.org/10.1109/ICRE.2003.1232777
http://dx.doi.org/10.1016/j.jss.2009.03.014


[9] G. Kulk and C. Verhoef, “Quantifying Requirements Volatility Effects,” Science of Computer
Programming, vol. 72, no. 3, pp. 136–175, 2008. [Online]. Available: https://doi.org/10.1016/j.scico.
2008.04.003

[10] S. L. Lim and A. Finkelstein, Anticipating Change in Requirements Engineering. Springer Berlin
Heidelberg, 2011, pp. 17–34. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-21001-3 3

[11] ISO/IEC and IEEE, “ISO/IEC/IEEE 24765:2010 - Systems and Software Engineering – Vocabulary,”
vol. 2010, p. 410, 2010. [Online]. Available: http://www.iso.org/iso/catalogue detail.htm?csnumber=
50518

[12] F. Bushmann, R. Meunier, H. Rohnert, P. Somerlad, and M. Stal, Pattern-Oriented Software
Architecture: A System of Patterns. John Wiley & Sons, 2001.

[13] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R. Stafford, Patterns of Enterprise Application
Architecture. Addison Wesley, 2002.

[14] T. Kishi, N. Noda, and Y. Fukasawa, Software Architecture (in Japanese). Kyoritsu Shuppan, 2005.
[Online]. Available: http://www.kyoritsu-pub.co.jp/bookdetail/9784320027770

[15] B. Nuseibeh, “Weaving the Software Development Process Between Requirements and Architectures,”
in Proceedings of the 23rd International Conference on Software Engineering, International Workshop
on Software Requirements to Architectures, 2001.

[16] C. Schmitt and P. Liggesmeyer, “Getting Grip on Security Requirements Elicitation by Structuring
and Reusing Security Requirements Sources,” Complex Systems Informatics and Modeling Quarterly,
no. 3, pp. 15–34, 2015. [Online]. Available: http://dx.doi.org/10.7250/csimq.2015-3.02

[17] S. Haag, M. K. Raja, and L. L. Schkade, “Quality Function Deployment Usage in Software
Development,” Commun. ACM, vol. 39, no. 1, pp. 41–49, 1996. [Online]. Available:
http://dx.doi.org/10.1145/234173.234178

[18] M. Gloger, S. Jockusch, and N. Weber, “Using QFD for Assessing and Optimizing
Software Architectures the System Architecture Analysis Method,” in Proceedings of the 5th
International Symposium on Quality Function Deployment, 1999, pp. 119–127. [Online]. Available:
http://www.tarrani.net/QFDinSAA.final.pdf

[19] K. Brown, G. Craig, G. Hester, D. Pitt, R. Stinehour, M. Weitzel, J. Amsden, P. M. Jakab, and D. Berg,
Enterprise Java Programming with IBM WebSphere. Addison Wesley, 2001.

[20] Y. Anang and Y. Watanabe, “Applying Layering Concept to the Software Requirements Analysis
and Architectural Design,” in Proceedings of the 2nd Workshop on Continous Requirements
Engineering (CRE’16) in conjunction with the 22nd International Conference on Requirements
Engineering: Foundation for Software Quality (REFSQ’16), 2016, pp. 45–50. [Online]. Available:
http://ceur-ws.org/Vol-1564/paper8.pdf

14

https://doi.org/10.1016/j.scico.2008.04.003
https://doi.org/10.1016/j.scico.2008.04.003
http://dx.doi.org/10.1007/978-3-642-21001-3_3
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50518
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50518
http://www.kyoritsu-pub.co.jp/bookdetail/9784320027770
http://dx.doi.org/10.7250/csimq.2015-3.02
http://dx.doi.org/10.1145/234173.234178
http://www.tarrani.net/QFDinSAA.final.pdf
http://ceur-ws.org/Vol-1564/paper8.pdf

	A Method for Software Requirement Volatility Analysis Using QFD

