



Abstract— Many industrial products are controlled by

software. Errors in the control software make the products and

users danger. To avoid this situation, it is necessary that

inexpected behaviors and operations do not make the products

unsafe state. This paper proposes a method that the control

software makes safe by conducting "Failure Mode and Effects

Analysis (FMEA)" and "Fault Tree Analysis (FTA)"

repeatedly. The outline of the proposed method is as follows. In

the upper phase, risks of control software are analyzed by using

FMEA exhaustively, and the measures are reflected to the

specifications. In the lower phase, risks that cannot be taken the

measures are clarified, and the measures are reflected to the

specifications and software. FMEA and FTA are conducted

repeatedly, until the control software does not contain risk.

I. INTRODUCTION

Computers have been installed into industrial products,
while the use of software has become popular for controlling
such products. The kind of software used to control industrial
devices and products is referred to as control software.
Recently, trouble and problems in industrial products due to
unsafe factors derived from control software have been
increasing [1, 2, 3]. Unsafe factors existing in control software
can have significant impact on human life and industrial
products. Therefore, methodology for securing control
software safety has become a requirement.

In this paper, we propose a method for securing control
software safety through the entire development process. The
following section outlines the proposed method. In the upper
process of development, "Failure Mode and Effects Analysis
(FMEA)" is applied to the requirement specification and the
functional specification of control software in order to
exhaustively clarify unsafe factors inherent in control software.
Standard measures for securing software safety are proposed,
and risks are reduced to the allowable degree by conducting
those measures. In the lower process, "Fault Tree Analysis
(FTA)" is applied to developed control software in order to
clarify the causes of those unsafe factors which are not
addressed in the upper process. Risks caused because of
unsafe factors are reduced to the allowable degree by revising
the design specification and control software. After control
software has been developed, FMEA and FTA are further
conducted repeatedly in order to clarify new unsafe factors.

M. Takahashi and Y. Watanabe are with the Univ. of Yamanashi,

graduate school dept. Div. of Eng. Sect. of Information Eng., Takeda3-5-11,

Kofu, Yamanashi, 400-8511 Japan (phone: +81-55-220-{8585, 8651},
e-mail: {mtakahashi, nabe}@yamanashi.ac.jp).

R. Kosaka and Y. Anang was a M.S. and Ph.D student at Univ. of

Yamanashi, , Takeda3-5-11, Kofu, Yamanashi, 400-8511 Japan (e-mail:
{g15mk007, g14dma01}@yamanashi.ac.jp).

R. Nanba is with the Daiichi Institute of Technology, Faculty of Eng,

Kokubu-Chuou 1-10-2, Kirishima, Kagoshima, 899-4395 Japan (phone:
+81-995-45-0640, e-mail: r-nanba@daiichi-koudai.ac.jp).

II. RELATED STUDIES

Related studies are classified into studies regarding the
establishment of the standards associated with software safety,
studies regarding software FMEA and FTA, and studies
regarding the development of safety analysis tools.

First, let us focus on the establishment of standards
associated with software safety. In the automotive industry,
the functional safety standards, ISO26262, were established
[4]. ISO26262 specifies procedures to enhance safety for
control software by applying "Hazard and Operability Study
(HAZOP") [5], FMEA, and FTA. As for control software used
for drug manufacturing facilities, International Society for
Pharmaceutical Engineering established the guideline called
Good Automated Manufacturing Practice Ver. 5 (GAMP5) [6],
and Ministry of Health, Labor and Welfare set the Guideline
on Management of Computerized Systems for Making
Authorization Holders and Manufacturers of Drugs and
Quasi-drugs [7]. However, those guidelines only provide
processes for developing highly-safe control software.

Our next focus is studies related to software FMEA and
FTA. Takahashi proposed the implementation method of
FMEA for control software which is used for manufacturing
drugs [8]. Morita discovered program bugs by listing failure
modes and estimated causes from blocks [9]. Niwa proposed
and implemented reliability improvement measures by listing
failure modes based on the external design unit [10]. Goddard
conducted FMEA while defining the failure mode in the
command level of control software [11,12]. Snooke conducted
FMEA by converting software into an equivalent circuit [13].
Next, let us focus on studies related to software FTA. Weber
analyzed fault causes by utilizing FTA for aircraft control
software [14]. Friedman proposed an automatic fault tree (FT)
creation method for malfunction of software [15]. Moreover,
Leveson proposed an FTA approach for control software
based on a combination of fault tree (FT) templates
corresponding to the programming language [16]. Expanding
Leveson’s approach, Takahashi et al. proposed a method to
mechanically create FT for control software [17].

The last focus is regarding safety analysis tools. Those
commercially-available FMEA support tools include
AutoFMEA of Toyo Corporation [18], and FMEA-Pro of IHS

Inc. [19]. When it comes to FTA support tools, PTC’s PTC

Windchill FTA is one option [20]. However, software is
actually outside the scope of these tools. In addition, they
cannot be coordinated and interchanged.

Although related studies have been done individually as
described above, specific methods for supporting the securing
of control software seamlessly throughout all developmental
processes have been in the pipeline and awaited.

A Study of Methodology for Securing Control Software based

FMEA-FTA Coordination

Masakazu Takahashi, Riki Kosaka, Reiji Nanba, Yunarso Anang, and Yoshimichi Watanabe

Proceedings of the 2016 IEEE/SICE International Symposium on
System Integration, Sapporo Convention Center, Sapporo, Japan,
December 13-15, 2016

TuP1E.1

978-1-5090-3328-7/16/$31.00 ©2016 IEEE 144

Figure 1. Development Process for safe software

III. OUTLINE OF THE PROPOSED METHOD

This chapter overviews the proposed method for securing
software safety. Section A outlines the proposed method.
Section B describes the FMEA method for exhaustive analysis
of software unsafe factors. Section C and D describes FMEA
and FTA method for analyzing the causes. Finally, section E
describes the environment for securing software safety based
on a combination of FMEA and FTA.

A. Process of Achieving Safe Software

The following section outlines the proposed method. The
proposed method secures control software safety by repeating
FMEA and FTA. This method also implements safety
measures throughout all the processes of control software
development. Figure 1 shows methods for securing software
safety which are applied in each process of control software
development, including the entire flow.

In the upper process, the proposed method examines
potential failures and malfunction in the stage of creating the
development plan, requirement specification, and functional
specification. FMEA is used for this exhaustive examination.
FMEA lists failure modes according to each functional part
which composes control software. FMEA also clarifies the
influence of the failure mode, which occurred in a functional
part, on the entire control software system as a failure. In
addition, it clarifies measures to be taken and priorities
according to the level of influence. Concerning higher-priority
failures, the development plan, the requirement specification,
and the functional specification are revised. Measures which
are accompanied with partial program revision are
implemented during the lower process.

Next, program measures which cannot be implemented in
the upper process are implemented during the stage of creating
the design specification and the coding stage. FTA is
conducted for the software faults discovered later in order to
clarify the fault causes and revise the design specification and
the program. As for all faults, these measures reduce the
influence of failure on the entire control software system to the
allowable degree.

The first session of examination for securing control
software safety is completed through the processes above.
However, implementation of a wide variety of safety measures
could produce a new failure mode in a functional part of
control software, or could cause another fault which affects the
entire control software system. for control software after the
first examination for safety. Repeating this process until all
failures and faults become allowable levels can achieve
development of secure control software.

B. Outline of FMEA procedure

This section describes the FMEA method utilized for
examining the safety of control software in the upper process.

FMEA divides the target industrial product into
components in order to list physical faults of these
components. At this time, it is assumed that the target
industrial product and its components are in proper condition.
Faults of these components are referred to as failure modes.
The influence (failure) of a failure mode occurred given to the
entire product system is then examined. Clarifying failures
due to all failure modes and implementing proper measures
can secure safety for the industrial product. Program bugs are
generated during the stage of software creation, so that the
software program itself might not be in proper condition.
Therefore, program bugs are not referred to as failure modes.
Control software program bugs can adequately be removed by
testing. Based on this concept, we decided to exclude program
bugs from FMEA targets. Therefore, we set the following
deviations as control software failure modes handled in this
study: Deviation of appropriate use of control software
components maintained in proper condition by testing, and
deviation of operational procedure. The proposed method
analyzes the results of FMEA for the existing control software
and clarifies common failure modes and standard measures.

Figure 2 shows the flow of the proposed FMEA. First,
functionas of control software are listed based on requirement
specifications and functional specifications as input. Second,
usage and operational procedures are confirmed whether they
correspond or not according to each functional unit listed.
Third, when they correspond, corresponding common failure
modes are clarified. Additionally, a correspondence table is
created. Fourth, functions, common failure modes, and
influences on the control software are identified in the FMEA
sheet. Fifth, Severity, Incidence, and Detection Rate are
determined according to each failure mode in order to
determine the risk priority (by entering values in each upper
columns in the FMEA sheet). Risk evaluation matrices in
Figure3 are used for determining the risk priority. By using the
left matrix in Figure 3, the risk class is obtained from Severity
and Incidence. By using the right matrix in Figure 3, the risk
priority is obtained from the risk class and the detection rate.
Sixth, based on the risk priority, it is determined whether the
control software can tolerate the relevant failure or not. If
intolerable, the application of the standard measures in Table 1
is then considered. Finally, Severity, Incidence, and Detection
Rate where the standard measures are applied are re-evaluated
in order to determine the risk priority (by entering values in
each lower columns in the FMEA sheet). Confirmation that
the control software can tolerate the relevant failure brings an
end. If the failure is not tolerated, other standard measures are
considered, while the Severity, Incidence, and Detection Rate
of the failure is re-evaluated. These processes are repeated
until the control software can tolerate all faults.

C. Outline of FTA procedure

This section describes the FTA method utilized for
examining the safety of control software in the lower process.

FTA traces the causes which cause particular unfavorable
phenomena (faults) of the target product in a phase manner in
order to clarify them. When tracing the factors , FTA focuses

145

Figure 2. Flow of Proposed FMEA Procedure

Figure 3. Risk Assessment Matrix

Figure 4. FT templates for Control Software

on the product's components and the relationships between the
components. Those paths (causal relationships) of influences
that lead to the causes from the fault are expressed in a tree

structure with logic symbols and event symbols. This tree is
referred to as a Fault Tree (FT). Control software is composed
of basic commands as components, while execution sequences
of these basic commands are interfaces between the
components. In the proposed method, while analyzing the
existing control software written in C, we created FTA
templates for control software. The following seven types of
template were created: assignment, if-then-else, while,
module call, interrupt, statement inexecutable, and global
variable. Figure 4 shows assignment, module call, and
if-then-else FT template. As for the interfaces between
components, FT templates are connected while the execution
sequences of commands are traced from the one where a fault
occurs. FT templates are then connected until the execution
sequence of commands can no longer be traced. The
phenomenon existing in the node on the edge of the FT is
finally determined to be the cause of the fault. Figure 5 shows
the FTA procedure. Note that we used program slicing in order
to trace the execution sequence of basic commands. Program
slicing is a technique that clarifies dependencies between
commands within the program. This technique extracts all the
commands that could affect the execution of the commands.

D. Safety Analysis Support Environment

This section describes a safety analysis support
environment achieved by integrating all the processes and
methods described in section 3.A through section 3.C.

Figure 6 shows the outline of the safety analysis support
environment. This environment consists of the FMEA/FTA
support tool, and safety information management database.

146

Figure 5. Flow of Proposed FTA Procedur

Figure 6. Proposed safety support environment

Figure 7. Output of FMEA support tool

147

The FMEA support tool is used in the creation stage of the
development plans, the requirement specification, and the
functional specification. A list of functions extracted from the
requirement specification and the functional specification is
used as input to the FMEA support tool. Output is the
FMEA results. Figure 7 shows the output results of the this
tool. As the output is written as comma-separated-value file,
Figure 7 is expressed using table format for readability.

The FTA support tool is used in the creation stage of the
design specifications and the program. Faults and control
software are input to the FTA support tool. FT is the output for
faults. Figure 8 shows the output results of this tool. As the
output of the FTA is written as comma-separated-value file,
Figure 8 is used indent style for readability.

The safety information database manages data necessary
for conducting FMEA and FTA. This database consists of the
seven tables. The requirement specification and functional
specification table have information regarding functions
contained in the specifications. The failure mode table has
information regarding all common failure modes. The
correspondence table has information regarding relationships
between functions and common failure modes. The
failure/fault table has information regarding the direction of
failure measure according to each common failure mode. The
actual measure table has information regarding specific
measures, and the fault tree table has information regarding
the fault tree according to each fault. When new information is
obtained, such new information is amassed by implementing
the Plan-Do-Check-Action cycle.

IV. EVALUATION

In order to evaluate the proposed method and support
environment, we applied them to the development of control
software for an support device that is a seating chair that helps
elderly persons to stand up. Figure 9 outlines this support tool.
This support tool consists of the mechanism part and the
control part. The mechanism part is used by placing on the
chair seat. This mechanism part has a structure with two
hinged aluminum panels between which a balloon is inserted.
Blowing and shrinking this balloon adjusts the seating angle of
the top aluminum panel. This action enables elderly persons
who are seated to lean their upper bodies forward (a posture
that enables a person to stand up easily) to help them stand up.
The control part consists of the controller (Lenovo Thinkpad
E430C) and various sensors. The sensors are the acceleration
sensor (KXM52-1050 of Kionix), which measures the
acceleration of the vertical movement when elderly persons
stand up, and the pressure sensor (FSR#402 of INTERLINK
ELECTRONICS), which measures arm force. We used
Gainer I/O modules for connecting the computer and the
sensors. Processing language was adopted as the
programming language.

By the way, we developed the FT templates used by the
proposed method while assuming C language to be used, not
processing language. However, we only used simple
commands (assignment statement, if-then-else statement,
while statement, module call, global variable) for the control
software. Therefore, we were able to use developed FT
templates, and we did not need to develop FT templates for
processing language.

Figure 8. output of FTA support tool

Figure 9. Standing-up support tool for elderly person

Figure 10. Application result of the proposed method

Here, the result that the proposed method and support
environment were applied to the control software is described
below. In the requirement definition phase, an event, the seat
becomes steep slope because the seat angle control function of
the control software does not work appropriately, was found
by using FMEA, and the event was analyzed by using FTA
after completion of the control software. FTA for whole of the
support tool was conducting before conducting FTA. As a
result, we found that the event occurred when the variable
outValue in the control software became too big. Figure10(a)

148

shows the outline of the control software, Figure10(b) shows
the result of FMEA, and Figure10(c) shows the result of FTA
for the event "outValue is too big". The structure of the control
software is explained as followings. The function "setup"
declares continuous input of the data of seat angle, and the
function "draw" inputs seat angle data and outputs control
signal to blower fan for expanding the balloon. When the
control function of blower fan does not stop, the balloon
continues to expand. Consequently, the seat angle becomes
steep slope or the explosion of the balloon occurs. The
measures are necessary to avoid this serious situation. As for
the event, FTA is conducting after the completion of control
software. The event is set as a top event, and the event is
caused in line (4) of the control software in Figure 10(a). The
outValue is converted into integer type in line(3). The FT
template for module is applied because type conversion
function is considered as module. It is assumed that the type
conversion function does not have any errors, because it is a
standard equipped function. The other functions are
considered as same. As a result, the cause is considered that
the input to value in line (3) is too big. Value is calculated in
the formula in line(2) (the detail of the formula is omitted).
The FT template for assignment is applied. As a result, the
cause is considered that the input to "x is too big". X is inputted
in line (1). The FT template for module is applied because the
function map is considered as module. As a result, the cause is
considered that the "analogInput[0] is too big". FTA is
finished because the further tracking of the cause cannot be
conducted. As a result of FTA, the original cause that
analogInput[0] is too big is considered as a failure of the
sensor, because the software does not contain any failure. We
add following functions as measures; the function that
outValue is not outputted when analogInput[0] is too big, and
the function that outValue is not outputted when the integrated
value of outValue exceeds the threshold. Those measures
make the control software safe. Still, in the actual safety
analysis for support tool system, we proposed measures to the
hardware of the tool based on the results of the proposed
method, such as redundancy of the sensors, and addition of
preventing equipment for too much leaning of the seat.

V. FUTURE ISSUES

In this paper, we proposed a method to secure control
software safety by applying FMEA and FTA repeatedly. Our
proposal also included a support environment for the proposed
method. Our attempt to apply the proposed method and
support environment to the development of control software
for a support tool to help elderly persons stand up clarified
effective measures for securing control software safety. This
confirmed that our proposed method and support environment
could work effectively.

 In the future, we want to apply this proposed method and
support environment to more control software. Based on the
results, we will improve the proposed method and support
environment. In particular, we will try to enhance common
failure modes and FT templates. Currently, the results of
FMEA and FTA are output in Comma-Separated-Value type
files, which give us lower readability. Therefore, we will also
examine development of interfaces that enable engineers to
understand the FMEA and FTA results intuitively.

REFERENCES

[1] TOYOTA motor corporation, 75 years of TOYOTA, Voluntary

Remedies of Recalls, http://www.toyota-global.com/company/
history_

of_toyota/75years/text/leaping_forward_as_a_global_corporation/cha

pter5/section3/item1.html (2016.8.1 accessed).

[2] SEBoK, Medical Radiation Case Study, http://sebokwiki.org/wiki/

Medical_Radiation_Case_Study (2016.8.1 accessed).

[3] Japan Aerospace Exploration Agency, Operation plan of X-ray

Astronomy Satellite ASTRO-H(Hitomi), http://global.jaxa.jp/press/
2016/04/20160428_hitomi.html (2016.8.1 accessed).

[4] Japan Automobile Research Institute, Functional Safety,

http://www.jari. or.jp/tabid/223/Default.aspx (2016.8.1 accessed)

[5] HAZOP and Plant Safety Promotion , An elementary Knowledge of

HAZOP, http://hazop.jp/hazop_basic.html (2016.8.1 accessed).

[6] GAMP forum, GAMP5 Risk-Based approach to Complaint GxP

Computerized Systems, International Society of Pharmaceutical
Engineers, 2008.

[7] Ministry of Health, Labor and Welfare, Guideline on Management of

Computerized Systems for Making Authorization Holders and

Manufactures of Drugs and Quasi-drugs, http://members3.jcom.home.

ne.jp/yrq01133/computer_guideline/20101021_1021-11.pdf (2016.8.1
accessed).

[8] M. Takahashi, R. Nanba, and Y. Fukue, A Proposal of Operational Risk

Management Method Using FMEA for Drug Manufacturing
Computerized System, Transaction on The Society of Instrument and

Control Engineers, Vol.45, No. 5. pp285-294, 2012 (in Japanese).

[9] M. Morita，Reduction of software bugs using FMEA，Software

Quality Management Catalog, Union of Japanese Scientists and

Engineers, pp.461-486, 1990 (in Japanese).

[10] M. Niwa, Improvement of Reliability for System design Using FMEA,

Software Quality Management Catalog, Union of Japanese Scientists
and Engineers, pp467-475, 1990 (in Japanese).

[11] P. L. Goddard. Validating The Safty of Embedded Real-Time Control
Systems Using FMEA, Proc. of Annual Reliability and Maintainability

Symposium, pp.227-230, 1993.

[12] P. L. Goddard: Software Safty Techniques, Proc. of Annual Reliability

and Maintainability Symposium2000, pp.119-123, 1993.

[13] N. Snooke, Model-based Failure Modes and Eff ects analysis of
Software, Proc. of 15th International Workshop on the Principles of

Diagnosis, pp. 221-226, 2004.

[14] W. Weber, Heidemarie Tondok, and Michael Bachmayer: Enhancing
Software Safety by Fault Trees: Experiences from an Application to

Flight Critical SW，Proc. of SAFECOMP2003，LNCS 2788, pp.289

-302, 2003.

[15] M. A. Friedman, Automated Software Fault Tree Analysis for Pascal
Program, Proc. of Annual Reliability and Maintainability Symposium,

pp.458-461, 1993.

[16] N. G. Leveson and P. R, Harvey: Analyzing Software Safety, IEEE
Transaction on Software Engineering, Vol. 9, No.5, pp.569-579, 1983.

[17] M. Takahashi, Riki Kosaka, and Reiji Nanba: A Study of Fault Tree
Analysis for Control Program in Space System, Proc. of 2015

IEEE/SICE International Symposium on System
Integration,pp.301-306, 2015.

[18] Toyo Corporation, AutoFMEA, http://www.kumikomi.net/archives/

2011/04/esec2011_3.php?page=8(2016.8.1 accessed).

[19] IHS Inc., FMEA-Pro, https://www.ihs.com/Info/ehss/fmea-pro.html

(2016.8.1 accessed).

[20] PTC, Windchill FTA, http://www.ptc.com/product-lifecycle-

management/ windchill/product-risk-and-reliability(2016.8.1
accessed).

149

