
Multi-Layer SOA Implementation Pattern with

Service and Data Proxies for Distributed Data-

Intensive Application System

Takdir

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Bandung, Indonesia

takdir.rex@students.itb.ac.id

Achmad Imam Kistijantoro

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Bandung, Indonesia

imam@stei.itb.ac.id

Abstract— Web service is becoming a widely solution used to

realize Service Oriented Architecture (SOA). It enables

application’s business logics interoperable with each other by

extending XML flexibility. Current early standardized web

service technologies show significant progress in functional

aspects interaction, but they are lack of data aspect

considerations, such as transferring and integrating large amount

of data that are distributed throughout different locations. In this

research, we propose a SOA implementation pattern improving

coordination of both functional and data aspects to be used

across distributed environment by combining several advances in

SOA and distributed systems. We define synchronization,

replication, and routing mechanism to support distributed

systems. This paper introduces the design as preliminary result of

our research. It is designed by analyzing previous approach to

avoid semantic contradictions of SOA principles and its existing

standards and technologies. Next, we need to realize and evaluate

them in order to be used in the real application.

Keywords— data-intensive; SOA; web service; data integration;

distributed data; distributed process; distributed system

I. INTRODUCTION

Service Oriented Architecture (SOA) has become a recent
adopted approach in application system design. It introduces
reusability of functionality to reduce efforts in repeating
constructions of similar functional aspects. Web services
technology, which extends XML portability, offers solution in
making application’s business logics interoperable with each
other. End-product applications, called composite applications,
are composed of web services, which execute the
corresponding logics.

However, current web service technologies and standards
mainly focus on functional aspects of distributed components
interaction [1]. Data is treated only as input (parameter) and
output (return value), thus data sources cannot be accessed
directly by clients. As a result, transforming data-intensive
applications, which are characterized by (i) a set of functional
operations processing large amounts of data and (ii) the
delivery and transformation of huge data sets between those
functional activities [2], into a SOA-based environment by
simply using existing web services standards without well-

designed implementation pattern results the severe process of
parsing a large amount of data.

Various approaches have been proposed as solutions to
data-intensive applications. Some of them (e.g. Web Data- and
Artifact- centric Service (W-DAS) [1] and Reference
Resolution System (RRS) [2]) are simply separating data
access and functional aspects, whereupon composite
applications use different communication ports to access the
web services and the data sources directly. In this scenario,
applications are tightly coupled with the data sources and the
web services cannot guarantee whether the data access is
available if it is being reused by others. Reusability is
sacrificed using this scenario. Other approaches (e.g. Stream-
Based Web Service Invocation [3] and a new bulk data transfer
with service encapsulation [4]) try to modify web services
messaging protocol (SOAP) to handle direct reference to data
sources, but none of them is acceptable as new standard due to
fundamental changes which affect other existing web services
standards.

On the other hand, locating data and its related functional
logic (web service) centralized in single place will reduce
performance and scalability because of network traffic
bottleneck. It also decreases the data availability which is a
critical point in the data-centric business. Decentralizing them
closer to their concerned users gives some advantages. First, it
will improve response time and decrease network traffic. In
addition, partitioning data and its functional aspects across
multiple systems can improve query performance. Another
advantage is maximizing availability by removing a single
point of failure.

Choosing the decentralization approach does not mean we
totally evade all related issues. Well-considered
synchronization and replication strategies become success
criteria in decentralizing resources. Effective routing that point
request to the proper location is another important
consideration.

In distributed systems field, Data Grid offered a distributed
infrastructure that integrates distributed and independently
managed data resources. Associated with it, recently, a lot of
inventions were offered such as WebSphere Information
Integrator (WSII), Mobius, Open Grid Services Architecture -

Data Access and Integration (OGSA-DAI), and Data
Distribution Service (DDS). These all provide mechanism to
integrate data from geographically distributed environment for
applications working across administrative domains.

In contrast, there is only few research focuses on
synchronization of data aspect and functional aspect to deliver
SOA flexibility and reusability advantages for implementing
data-intensive application system. In this research, we aim at
creating SOA implementation pattern considering both data
and functional aspect to be used across distributed
environment. It requires well-designed integration pattern
which is not only considers the service level (web services), but
also the process level (BPEL) design to ensure all elements of
SOA support these aspects pervasively. We propose a
comprehensive SOA implementation pattern design
considering SOA design principle and data integration
perspective.

II. LITERATURE REVIEW

A. SOA, Web Services, and BPEL

There are many different definitions of SOA that vary
according to the area under study. In this paper, we simply
define SOA as a software architecture that provides flexible
integration pattern of software components and optimize
reusability that can reduce effort in software development. In
the real world implementations, these two terms (i.e. flexible
and reusable) are expanded into various paradigms such as
stateless, loosely coupling, and composable.

SOA has become a widely used concept in software
industry [4]. Today, SOA are an active research field with
significant progress in web services (WS) based technologies
[5]. Web Services technology was a choice to implement SOA
because of its interoperability among various platforms. World
Wide Web Consortium (W3C) introduced web services
standard architecture in 2004 [6]. It is prominent technology to
make application functionalities (business logic) accessible by
others.

On top of Web services, the Business Process Execution
Language for Web Services (BPEL4WS, or BPEL for short)
becoming widely syntax for representing readable business
process for automation [7]. BPEL drives communication of
web services in order to deliver business services that contain
several interconnected processes. Web service address
interoperability issues in service level, whereas BPEL
orchestrate web services in process level.

B. Problems of current SOA technology to be used in data-

intensive application systems

Web services adopted eXtensible Markup Language
(XML) to represent data structure attached in web services
messaging protocol called Simple Object Access Protocol
(SOAP). The requester sends the data to web services in form
of function parameters and receives output as return value
variable. Putting a bunch of data as parameter or attachment
results the serious problem on parsing large quantities of data
[4].

Transforming data from data storages (e.g. relational
database) to XML format and vice versa continuously causes
data synchronization problems when handling concurrent data
update operations. If we want to ensure that a BPEL process
always uses the latest version of data, we have to implement
data synchronization manually [8]. Adding such data
synchronization and data checking codes in several places in
the business logic can lead to a bad process design with code
duplication and the code size and complexity are increased [8].

In data-centric business, data becomes primary focus which
its behaviors have to be intensively managed. Data flow has to
be controlled centrally to ensure data integrity and follow
correct treatment in data validation process. There are two
major aspects, which are not covered in current web service
and BPEL, which should be considered when treating data as a
first class citizen [9]. First, data flows should be explicitly
handled and modelled within the process description at design
time. The second aspect is the need of specialized data transfer
mechanisms that enable these modelled data flows executed
efficiently.

C. Related Work

Most of authors, who have identified the problem of
inefficient data access and manipulation in BPEL processes,
claim that BPEL is not appropriate for data-intensive processes
where large amount of data are passed throughout the process
and between business partners [8]. In line with it, several
researchers have proposed various approaches to improve
service and process level support.

Habich et al have presented their Data-grey-box web
service, an extension of web services, as a solution to optimize
data transfer between web services endpoints [10]. Continuing
their works, they then proposed BPEL extension called BPEL-
Data Transition (BPEL-DT) for data-grey-box orchestration
purpose [8]. A study that concerned with data flows has also
been offered by them to treat data as primary business
concentration [9]. Their recent research using this approach
focused on data-flow optimization on cloud technology [11].
However, their web services extension cannot be implemented
in a standard-conform manner because contradicts the web
service semantics [12].

Another approach for data-centric process model based on
Business Artifacts (BAs) has been proposed by the research
group of Hull et al. In contrast with Habich, they started the
study from business operation and process modeling using
business artifacts approach [13]. The business artifact centric
approach considers data as an integral part of business
processes models, and it defines the process model and its
operations in terms of interacting key business artifacts [1]. A
data-centric web services model that integrates functional and
data perspective, named Web Data- and Artifact- centric
Service (W-DAS), which based on previously introduced the
Guard-Stage-Milestone (GSM) approach for specifying
Business Entity Lifecycles (BEL’s) was introduced in another
research [14]. Their web service extension exposed direct data
access to client. Therefore, it caused another flexibility
problem because of tightly coupled between data sources and
composite applications.

Krizevnik and Juric handled data synchronization issues
using their proposed BPEL variable, called data-bound
variables [8]. The variables are automatically synchronized
with the data in data sources. Thus, checking data validity
manually can be excluded from BPEL design to improve the
BPEL process design. Similar approaches attaching or
modifying BPEL variables for data purposes have been
previously done in BPEL-D [15] and RRS [2], but this kind of
approach contradicts with the BPEL semantics where BPEL
variables are fundamentally used to share data instead of
treating them as data references [12].

There is also a research which attempts to optimize data
transfer between web services by exploiting standard SOAP.
Stream-based web services invocation has been proposed to
solve performance problems and heavy resource consumption
when services are used to process large amounts of data [3]. It
changes the existing request–response paradigm in web
services invocation into stream semantics. The evaluation
shows great performance compared to traditional invocation
mechanism. Another work used data-partitioning
communication pattern that enables efficient flow of large data
traffic between a workflow orchestrator and web services
without modifying standard SOAP message [16].

On the other hand, researchers in grid technology represent
The Open Grid Services Architecture (OGSA) which is a Grid
system architecture based on web services concepts and
technologies [17]. There are high-level components of OGSA
for providing service-based platform such as OGSA-DQP
(Distributed Query Processor) [18] and OGSA-DAI (Data
Access and Integration) [19]. Service-based grid made data,
which is scattered across various platforms, structures, and
locations, available and accessible to distributed sets of users
and their applications in comfortable manner. In many business
domains, Grids and SOA are considered to improve application
design, integration and execution [20]. There are many recent
advances extending OGSA approach in grid technology to
improve performance in data management (e.g. BlobSeer [21],
and MAPFS-Grid [22]) that can be the solutions to data access
and integration mechanism.

Centralized and distributed are well-known opposed
approaches in computer science. In SOA implementation
strategy, centralized SOA means all SOA participants depend
on centralized control point. The composite applications cannot
work without contacting the server to invoke the required
services. In contrast, distributed SOA uses reachable local
resources to deliver high available functionality, including the
data, which is needed by these applications. Although
distributed approach seems to have complex management, it
should provide transparent resource access mechanism to users
[23].

There are several studies mainly oriented to the
implementation of distributed SOA. Some of them (i.e.
Research on Distributed Architecture Based on SOA [23], and
The SOA-Based Solution for Distributed Enterprise
Application Integration [24]) gave basic ideas for application
integration with distributed support. Their solutions need
further researches and improvement to solve real world
problems. Wang et al use proxy service as a gateway to route

connections among distributed services [25]. By adopting
OSGi framework, their approach can be a great solution to
coordinate a number of clients in separated locations. A
distributed replication of web service is an important aspect to
obtain fault tolerant web services as shown in [26] and [27].
Moreover, security aspect of distributed system should be
considered by implementing appropriate authentication and
authorization mechanism [28].

According to our literature study, we can simply categorize
these researches based on problems to be addressed into
Process and Data Flow Modelling, Data Transfer Mechanism,
Data Access and Integration, and Distributed SOA. We
represent our discovered literatures in the following table.

TABLE I. LITERATURE DISTRIBUTION

Authors, Year Description
Problem

Addressed

Contradicts

web services

/ BPEL

semantics

Habich et al, 2008
Habich et al, 2009

Data-aware
process execution

Process &

Data Flow

Modelling

Yes

Cohn et al, 2009

Process modelling

based on Business

Artifacts

Process &

Data Flow

Modelling

Yes

Wieland et al, 2009

Introduce data

pointer variables

in BPEL

Process &

Data Flow

Modelling

Yes

Krizevnik and
Juric, 2012

Data-bound
variables in BPEL

Process &

Data Flow

Modelling

Yes

Habich et al, 2007
Data propagation
service model

Data

Transfer

Mechanism

No

Preißler et al, 2008
Stream-based
Web Sevice

Invocation

Data
Transfer

Mechanism

Yes

Sztromwasser et al,

2011

Data partitioning

for Web Service

Data
Transfer

Mechanism

No

Vaculin et al, 2012
Web Data- and
Artifact- centric

Service

Data
Transfer

Mechanism

Yes

Foster, 2002
Antonioletti et al,

2005

Lynden et al, 2009

Enabling service-

oriented in Grid
technology

Data

Access &
Integration

No

Nicolae et al, 2010

Sánchez et al, 2010

Wöhrer et al, 2014

High performance

access in Grid

service

Data

Access &

Integration

No

Desmet et al, 2012
Ma et al, 2013

Xiong et al, 2013

Resources
allocation & data

replication

Data
Access &

Integration

No

He et al, 2009

Li & Wu, 2009

Basic ideas of
application

integration in

distributed SOA

Distributed

SOA
No

Wang et al, 2010

Adopting OSGi

framework in

SOA

Distributed
SOA

No

Tang et al, 2009

Zheng & Lyu, 2008

Web services

replication

Distributed

SOA
No

Qi-rui et al, 2010

Authentication &
Authorization in

distributed

systems

Distributed

SOA
No

III. SOA IMPLEMENTATION PATTERN DESIGN

A. Design Overview

We suppose that a multi-layer SOA design can be a
solution to preserve web service and BPEL semantics when
used in distributed data-intensive application system. We
propose a Multi-layer SOA implementation pattern with service
and data proxies for distributed data-intensive application
system which provides synchronization, replication, and
routing mechanism in either data or service layer.

Fig. 1. Multi-layer SOA implementation pattern for distributed data-

intensive application system

Data bus provides transparent data source access to the web
services. Hence, web services can access the data using single
port without knowing any details about data source, such as
location, detailed query structure, and physical storages
specifications. There are synchronization, replication and
routing strategies behind the data bus. Physical data sources are
replicated in different locations and accumulated centrally.
Synchronization ensures data integrity by coordinating several
data schema. Any incoming connections to access the data
should be routed to appropriate data storage using certain
routing mechanism.

Similarly, Service bus controls web service invocations
from composite applications. Web services, which contain
business logic, are replicated from central service repository to
the local repositories that are closer to the corresponding client.
The composite applications not need to be manually configured
to find proper location to access required services.

B. Synchronization

Scheduled synchronization can optimize bandwidth usage
and prevent system from bottleneck. We propose a mechanism
to ensure the data and web service logic are consistent between
local and central repository. Web service versioning are well-
considered to make sure that new change of logic can be used
as soon as possible.

Fig. 2. Data and web service synchronization

Composite application invokes local web service which is
connected to the data bus. Web service logic is serialized and
loaded to the runtime environment using particular mechanism
(e.g. Java Reflection API and dynamic class loader).
Serialization converts web service logic into native binary
format that can be stored to the secondary storage. Thus, it can
be treated like data.

C. Replication

Data and web service are replicated using caching
mechanism. They are placed close to the requester. Data
replication depends on corresponding web service replication.
They are stored in the local storage filling provided space and
continuously renewed based on certain priority value. In case
of long running data replication, data request are routed to
either local or central data storage while replication process is
running.

Fig. 3. Data and web service replication

D. Routing

Routing plays important role in distributed system. It
manages the network traffic and point requests to appropriate
destination. Proxy service presented in our literature review
[25] is an example of routing mechanism. In our design,
routing mechanism resides inside the data and service bus. It
checks the availability of resources in local, central, or another
near repositories and decides which resources to be accessed
by the requester efficiently.

IV. CONCLUSION AND FUTURE WORK

We proposed a SOA implementation pattern which deals
with distributed data-intensive application system. It is
intended to be suitable for current SOA-related standards
technologies (i.e. Web Services and BPEL). We avoid
changing the existing SOA standards technologies by using
multi-layer pattern that separates composite applications, web
services, and data sources. It provides transparent resources
(i.e. data and web service logics) access using combination of
synchronization, replication, and routing mechanisms. Data
integration is performed automatically, thus data can be viewed
as a unity and does not need to be manually checked in BPEL
syntax to ensure its integrity.

Our proposed design presented in this paper is preliminary
result of our research. Our proposed design needs further
research, especially in replication mechanism, followed by
realization for evaluation purpose. Well-designed mechanism
will result easy configuration, increase availability, and
improve system performance.

REFERENCES

[1] R. Vaculin, T. Heath, and R. Hull, “Data-centric Web Services Based on
Business Artifacts,” in 2012 IEEE 19th International Conference on
Web Services, 2012, no. 1, pp. 42–49.

[2] M. Wieland, K. Görlach, D. Schumm, F. Leymann, and G. Katharina,
“Towards Reference Passing in Web Service and Workflow-Based
Applications Towards Reference Passing in Web Service and
Workflow-based Applications,” 2009.

[3] S. Preißler, H. Voigt, D. Habich, and W. Lehner, “Stream-Based Web
Service Invocation,” Proceeding Datenbanksysteme Business, Technol.
und Web (BTW 2009),, vol. 2012, pp. 407–417.

[4] M. A. N. Yi, Z. Wen, D. U. Chen-hui, and P. A. N. Yang-fa, “Research
on bulk data transfer on OSS enterprise service bus,” J. China Univ.
Posts Telecommun., vol. 19, no. June, pp. 112–115, 2012.

[5] M. García-valls, P. Uriol-resuela, F. Ibáñez-vázquez, and P. Basanta-val,
“Low complexity reconfiguration for real-time data-intensive service-
oriented applications,” J. Futur. Gener. Comput. Syst., 2013.

[6] D. O. D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C.
Ferris, “Web Services Architecture, W3C Working Group Note, 2004,
http://www.w3.org/TR/2004/NOTE-ws-arch- 20040211,” 2004.

[7] OASIS, “OASIS Web Services Business Process Execution Language
(WSBPEL),” 2007. .

[8] M. Krizevnik and M. B. Juric, “Data-bound variables for WS-BPEL
executable processes,” Comput. Lang. , Syst. Struct., vol. 38, no. 4, pp.
279–299, 2012.

[9] D. Habich, S. Preissler, H. Voigt, and W. Lehner, “INNOVATIVE
PROCESS EXECUTION IN SERVICE-ORIENTED
ENVIRONMENTS,” in International Conference on Enterprise
Information Systems, 2009, pp. 299–302.

[10] U. A. Dirk Habich, Ste en Preissler, Wolfgang Lehner, Sebastian Richly
and and A. M. Mike Grasselt, “Data-grey-box web services in data
centric environments,” in Proceedings of the 2007 International
Conference on Web Services (ICWS 2007), 2007, pp. 976–983.

[11] U. H. D. and L. W. R. S. Assmann, “Using Cloud Technologies to
Optimize Data-Intensive Service Applications,” in 2010 IEEE 3rd
International Conference on Cloud Computing, 2010, pp. 19 – 26.

[12] O. Kopp, K. Görlach, D. Karastoyanova, F. Leymann, M. Reiter, D.
Schumm, M. Sonntag, S. Strauch, T. Unger, M. Wieland, and R. Khalaf,
“A Classification of BPEL Extensions,” J. Syst. Integr., pp. 3–28, 2011.

[13] D. Cohn and R. Hull, “Business Artifacts : A Data-centric Approach to
Modeling Business Operations and Processes,” in Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering, 2009, vol.
32, no. 3, pp. 1–7.

[14] R. Hull, E. Damaggio, F. Fournier, M. Gupta, A. Nigam, P. Sukaviriya,
and R. Vaculin, “Introducing the Guard-Stage-Milestone Approach for
Specifying Business Entity Lifecycles,” in Proceedings of International
Workshop onWeb Services and FormalMethods (WS-FM), 2010, no.
257593, pp. 1–22.

[15] F. Leymann, “Role-based Decomposition of Business Processes using
BPEL Rania Khalaf,” Int. Conf. Web Serv. 2006. ICWS ’06, pp. 770 –
780, 2006.

[16] K. Petersen, “Data partitioning enables the use of standard SOAP Web
Services in genome-scale workflows . 1 Introduction,” vol. 8, no. 2,
2011.

[17] I. Foster, M. Jeffrey, and S. Tuecke, “Grid Services for Distributed
System Integration,” no. June, pp. 37–46, 2002.

[18] S. Lynden, A. Mukherjee, A. C. Hume, A. a. a. Fernandes, N. W. Paton,
R. Sakellariou, and P. Watson, “The design and implementation of
OGSA-DQP: A service-based distributed query processor,” Futur.
Gener. Comput. Syst., vol. 25, no. 3, pp. 224–236, Mar. 2009.

[19] M. Antonioletti, M. Atkinson, R. Baxter, A. Borley, N. P. Chue, B.
Collins, N. Hardman, A. Hume, A. Knox, M. Jackson, A. Krause, S.
Laws, J. Magowan, N. W. Paton, D. Pearson, T. Sugden, P. Watson, and
M. Westhead, “The Design and Implementation of Grid Database
Services in OGSA-DAI,” Concurr. Comput. Pract. Exp. - Grid
Perform., vol. 17, no. 2–4, pp. 357 – 376, 2005.

[20] S. Desmet, B. Volckaert, and F. De Turck, “Design of a service oriented
architecture for efficient resource allocation in media environments,” J.
Futur. Gener. Comput. Syst., vol. 28, no. 3, pp. 527–532, 2012.

[21] B. Nicolae, G. Antoniu, L. Bougé, D. Moise, and A. Carpen-Amarie,
“BlobSeer: Next-generation data management for large scale
infrastructures,” J. Parallel Distrib. Comput., vol. 71, no. 2, pp. 169–
184, Feb. 2001.

[22] A. Sánchez, M. S. Pérez, J. Montes, and T. Cortes, “A high performance
suite of data services for grids,” J. Futur. Gener. Comput. Syst., vol. 26,
no. 4, pp. 622–632, 2010.

[23] H. Li and Z. Wu, “Research on Distributed Architecture Based on
SOA,” Int. Conf. Commun. Softw. Networks, 2009. ICCSN ’09, pp. 670–
674, 2009.

[24] X. He, H. Li, Q. Ding, and Z. Wu, “The SOA-Based Solution for
Distributed Enterprise Application Integration,” pp. 1–7, 2009.

[25] Y. Wang, M. Song, and J. Song, “AN EXTENDED DISTRIBUTED
OSGI ARCHITECTURE FOR IMPLEMENTATION OF SOA,” Conf.
Adv. Intell. Awarenss Internet (AIAI 2010), pp. 416 – 419, 2010.

[26] C. Tang, Q. Li, B. Hua, and A. Liu, “Developing Reliable Web Services
Using Independent Replicas,” 2009 Fifth Int. Conf. Semant. Knowl.
Grid, pp. 330–333, 2009.

[27] Z. Zheng and M. R. Lyu, “A Distributed Replication Strategy Evaluation
and Selection Framework for Fault Tolerant Web Services,” 2008 IEEE
Int. Conf. Web Serv., pp. 145–152, Sep. 2008.

[28] P. Qi-rui, W. Cheng, W. U. Jing, L. I. Jun, L. I. Qing, and S. Bei-en, “An
Authentication and Authorization Solution Supporting SOA-based
Distributed Systems,” no. 2007, pp. 535–538, 2010.

