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Abstract. In regression models, the use of least squares method may not appropriate in 
modelling the data containing outliers. Many robust statistical methods have been developed to 
handle such a problem. Lange et al. [1] developed robust models based on t distributions and 
using M-estimation approaches. In this recent article we evaluate the performance of M-
estimation as well as investigated the robustness of t distribution models in linear regression by 
means of simulation. The models are then applied to infant birth-weight data in Indonesia. We 
show that the t distribution models with small degrees of freedoms have produced better 
estimates from perspectives of their performance and robustness when compared to other 
estimates. 

1. Introduction 
Classical methods in regression analysis, such as least squares regression, are widely used by 
researchers in many disciplines. In the usage of the least squares regression, the assumptions such as 
normality and homoscedasticity must be satisfied. Unfortunately, these assumptions are rarely met 
when analyzing real data. Micceri [2] examined 440 large datasets from the psychological and 
educational literature. None of the data were normally distributed. The use of least squares regression 
with violated assumptions can result in the inaccurate computation of p-values, effect sizes, and 
confidence intervals. This may lead to substantive errors in the interpretation of data. 

Violation of the assumptions in the least squares regression can be due to the presence of outliers. 
The data values which are extremely different to the majority of the dataset are called outliers. Outliers 
may be correct observations, but they should always be checked for transcription errors. Since 1960, 
many robust and resistant methods have been developed to be less sensitive to outliers, i.e. robust with 
respect to outliers and stable with respect to small deviations from the assumed parametric model. 

It is well-known that to screen the data, to remove the outliers and then to apply classical inferential 
procedures in many cases are not obvious. First, in multivariate or highly structured data, it can be 
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difficult to identify outliers and influential observations. Second, it could be better to down-weight 
uncertain observations rather than to reject them, although we may wish to reject completely wrong 
observations. Moreover, rejecting outliers reduces the sample size and could affect the data 
distribution. The variances could also be underestimated from the cleaned data. Finally, empirical 
evidence shows that good robust procedures behave quite better than techniques based on the rejection 
of outliers [3]. 

Robust statistical procedures focus in estimation procedures, testing hypotheses and in regression 
models. It can proceed in two ways. First, analyst could design estimators so that a pre-selected 
behaviour of the influence function is achieved. There exist a great variety of approaches toward the 
robustness method. Among these, procedures based on M-estimators and high breakdown point 
estimators employ an important and complementary role. For the references, Huber [4], Hampel et al. 
[5] and Staudte and Sheather [6] are the main theoretical; see also Susanti et al. [7] for more practical 
one. Second, by replacing estimators that are optimal under the assumption of a normal distribution 
with estimators that are optimal for, or at least derived for, other distributions: for example using the t-
distribution or with a mixture of two or more distributions. Lange et al. [1] proposed robust statistical 
modeling using the t ditsribution for both linear and nonlinear regression models.  

This paper presents a comparative study of robustness in regression models. Section 2 reviews on 
robust method of estimation, and section 3 discusses robust regression using student-t distribution. 
Section 4 and 5 present the evaluation and application of robust methods. Simulation and 
implementation to real dataset are presented in these section. Section 6 discusses comparation with 
other study, advantage and interesting results, and section 7 states conclusions. 

2. Review on robust method of estimation 
Robust regression is an important tool for analyzing data affected by outliers so that the resulting 
models are stout against outliers. An anomalous observations may be dealt with by a preliminary of 
the data screening, but this is not possible with influential observations which can only be detected 
once the model has been fitted. In the light of the amount of data available nowadays and the 
automated procedures used to analyze them, robust techniques may be preferable as they automatically 
take possible deviations into account. 

In regression problem , there are two possible sources of errors, the observations iy , and the 
corresponding row vector of p  regressors ix . Most robust methods in regression only consider the 
first. Consider a regression problem with n cases ( ),i iy x  from the model 

 T
i i iy e= +x β , 1,...,i n= , (1) 

for a p-variate row vector x . 

2.1. M-estimation 
M-estimation is one of the robust regression estimation methods. The letter M indicates an estimation 
of the maximum likelihood type. Let ( )1

ˆ ,...,n n=β β x x  then 

 ( )( )1,...,n nE =β x x β . (2) 

Equation (2) shows that β̂  is unbiased and has minimum variance, so M-estimator has the smallest 
variance estimator. 

 

( )

2

2

ˆˆ̂var
ln ,
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j

j

ij j
dnE f x

d

β
β

β
β

⎡ ⎤
⎣ ⎦⎛ ⎞ ≥⎜ ⎟

⎝ ⎠ ⎛ ⎞
⎜ ⎟
⎝ ⎠

, 1,...,j p= , (3) 
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where ˆ̂
jβ  is other linear and unbiased estimator for jβ . 

M-estimation is an extension of the maximum likelihood estimate method that is possible to 
eliminate some of the data. M-estimation principle is to minimize the function ( ).ρ : 

 
1 0

ˆ min
j

pn
M
j i ij j

i j
y xββ ρ β

= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑ . (4) 

To obtain (4), we have to solve 

 ( )
1 1 1 0

1ˆ min min min
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−
= = .  

Furthermore, we get for the first partial derivative ˆ M
jβ  to jβ  so that 

 
1 0

1 0
ˆ

pn

ij i ij j
i j

x y xψ β
σ= =

⎛ ⎞⎛ ⎞
− =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ , (5) 

where 'ψ ρ= ijx is i-th observation on the j-th independent variable and =1. 
The Huber function finds the Huber M-estimator of a location parameter with the scale parameter 

estimated with the MAD. In this case 

 ( ) ( )( )max ,min ,k x k k xψ = − , (6) 

where k  is a constant the user specifies. Its limit as 0k →  is the median, and as k →∞  is the mean. 
The value k  = 1.345 gives 95% efficiency at the Gaussian model. 

Remember that huber’s function has the drawback that large outliers are not down weighted to 
zero. This can be achieved with Tukey’s biweight function which is a redescending estimator such that 
( ) 0xψ →  for x→∞ . In particular, it has 

 ( ) ( )22
k x x k xψ = − , (7) 

for k x k− ≥ ≥ and 0 otherwise, so that it gives extreme observations zero weights. The usual value of 
 is 4.685. In general, the standard error of these estimates are slightly smaller than in Huber fit. 

For equation (5), Draper and Smith [8] give a solution by defining weighted function  

 ( )
0
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i ij j
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so equation (5) becomes 
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1 0

0
pn

ij i ij j
i j

x y xψ β
= =

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
∑ ∑ . (8) 

In matrix notation, equation (8) can be written as 

 T T
i i=X WXβ X WY , (9) 

where iW  is a n n×  matrix with its diagonal elements are the weights. Equation (9), as known as 
weighted least squares (WLS) equation, can be solved by iteratively reweighted least squares (IRLS) 
method.  

2.2. MM-estimation 
M-estimators are not very resistant to leverage points, unless they have redescending ψ functions. The 
breakdown point of M-estimators is cannot exceed  for other robust M-estimators (that is, it 
decreases with increasing dimension where there are more opportunities for outliers to occur). Several 
robust estimators of regression have been proposed in order to remedy this shortcoming, and are high 
breakdown point estimators of regression. Many of them are the least median of squares (LMS) 
regression, the least trimmed squares (LTS) regression and S-estimator. All of them have breakdown 
point of 50% (Rousseeuw [9]). The disadvantages of these high breakdown point estimators are the 
highly inefficiency of their parameter estimates and require heavy computational effort (Venables and 
Ripley [3]). 

It is possible to combine the resistance of these high breakdown estimators with the efficiency of 
M-estimation. The MM-estimator proposed by Yohai, Stahel and Zamar [10] (see also Susanti et al. 
[7]) is an M-estimator starting at the coefficients and fixed scale given by the S-estimator. The MM-
estimates have an asymptotic efficiency as close to one as desired, and simultaneously breakdown 
point 50%. Formally, the MM-estimate ˆ MM

jβ  consists in many procedures: First, compute an S-

estimate with breakdown point 50%, denoted by *ˆ
jβ . Second, compute the residuals * *

0

p

i i ij j
j

e y x β
=

= −∑  

and find *σ̂  as solution of ( ) 2
1

n
i

i

e n p kϕ
σ=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ . Third, find the minimum ˆ MM

jβ  of 

*
1 0

1
ˆ

pn

i ij j
i j

y xρ β
σ= =

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ , where ( ).ρ  is a Tukey’s biweight function. 

 

3. Robust regression using student-t distribution 
Statistical inference based on the normal distribution is known to be vulnerable to outliers. The 
robustness procedures which discussed in Section 2 are mainly directed at detecting outliers. After 
editing outliers, subsequent analysis is often still restricted to least squares based on the normal linear 
model. A serious problem with this approach is that resulting inferences fail to reflect uncertainty in 
the exclusion process; in particular, standard errors tend to be too small. Lange et al. [1] proposed a 
method to robust inference on regression models using the t distribution. Its approach is to replace the 
normal distribution by the t distribution in statistical models.  

Suppose that sample data ( )1,...,iy i n= are recorded for n units. Typically, one assumes that the iy , 
are independent normal random vectors, then 

 ( ) ( )( )~ ,i i iind
y N μ θ ϕΣ . (10) 
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The vector mean iμ  is a known form indexed by a set of unknown parameters θ , and the covariance 
matrix iΣ  is known form indexed by a set of unknown parameters ϕ   The method proposed by Lange 
et al. [1] is replacing (10) with model 

 ( ) ( )( )~ , ,i i iind
y t vμ θ ϕΨ , (11) 

where ( ), ,i it vμ Ψ  denotes the t distribution with location parameter iμ , scale parameter iΨ , v  
degrees of freedom, and density 

 ( )
( )

( ) ( )
( )( ) ( )

( )1 2 1 2
2 1

1 2
1

1 2 1| , , 1
1 2 2

vn
i

i i i i i i
i

v
P y v y

v v v
μ μ θ ϕ

− − +

−

=

Ψ Γ⎡ + ⎤ ⎛ ⎞⎣ ⎦Ψ = × + − Ψ⎜ ⎟Γ Γ ⎝ ⎠
∑ . (12) 

Inferences about θ  and ϕ  in the univariate t distribution can be solved by likelihood methods. The 

log-likelihood for (11), ignoring constants, is ( ) ( )
1

, , , ,
n

i
i

l v l vθ ϕ θ ϕ
=

=∑ , where 

 ( ) ( ) ( ) ( ) ( )
2 ,1 1 1 1, , ln 1 ln 1 ln ln ln

2 2 2 2 2
i

i i
v vl v v v

v
δ θ ϕ

θ ϕ ϕ
⎛ ⎞ ⎡ ⎤+⎛ ⎞ ⎛ ⎞= − Ψ − + + − + Γ − Γ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠

. (13) 

The letter  denotes the gamma function and  

 ( ) ( )( ) ( )
22 1

1
,

n

i i i i
i

yδ θ ϕ μ θ ϕ−

=

= − Ψ∑ . (14) 

Suppose ( )
( )

( ) ( )

( )1 2

1 2

1 2
, 1

1 2 2

vv sg s v
vv

− +⎡ ⎤Γ + ⎛ ⎞⎣ ⎦= × +⎜ ⎟
⎝ ⎠Γ Γ

, so (12) becomes 

 ( ) ( )( )1 2 2| , , , ,i i i i iP y v g vμ δ θ ϕ
−

Ψ = Ψ . (15) 

The first and second partial derivatives of (15) with respect to ,θ ϕ  and v  in order to obtain the score 
and expected information matrix can be found at Lange et al. [1]. 

Note that as v→∞ , the univariate t distribution approaches the normal distribution  When v <∞ , 
maximum likelihood (ML) estimation of θ  and certain functions of ϕ  are robust in the sense that 

outlying cases with large Mahalanobis distances 2δ  are downweighted. In particular, ML estimates of 
θ  (with q components, say) for the normal model (10) satisfy the likelihood equation 

( )1

1

0
n

i i i i
i

l A y μ
θ

−

=

∂
= Σ − =

∂ ∑ , where l  denotes the log-likelihood and iA  denotes q-1 matrix of partial 

derivatives of iμ  with respect to θ . ML estimate of θ  under the t model (11) satisfy 

( )1

1

0
n

i i i i i
i

w A y μ−

=

Σ − =∑ , where 

 2

1
i

i

vw
v δ
+

=
+

. (16) 

is weight assigned to case . Clearly, iw  decreases with increasing 2
iδ . 

Although the t modeling is not a solution for all robustness problems, this model has many 
advantages. In particular, data with shorter-than-normal tails or asymmetric error distributions, varying 
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degrees of long-tails among the variables, or extreme outliers are not well modeled by [11]. An 
advantage of the t modeling approach, however, is that a clear statement of assumptions that is 
incorporated in the model specification, and a critical assessment of them can yield modifications of 
the model that deal with some of its limitations by allowing different degrees of freedom parameters 
for different variables. 

4. Simulation 
This section presents two simulation studies. Simulation 1 is designed to analyze the behavior of 
parameter estimates from models using t distribution and M-estimation. Simulation 2 studies the 
robustness of parameter estimates from the models by using Sensitivity Curve. 

4.1. Simulation 1 
The target of simulation 1 is to investigate the comparativeness of the models using t distribution with 
M-estimation models. The procedures of a simulation study are denoted for the following steps. 
1. Suppose the independently and identically distributed samples ( ),i ix y , 1,...,i n=  are sampled from 

the linear model. 
2.  Set X as a sequence of 30 number with minimum 1 and maximum 1000 ( 1 1x = , 2 1x x I= + , 

3 2x x I= + , ... , 29 28x x I= + , 30 1000x = ), where 999 29I = . 
3. Generate the error ( )~ 0,1ie N , 1,...,30i = . 
4. Consider the following eight cases for the contaminated error density of ie : 

• Case 1: 1 contaminant from N(0,100) was added to replace 1 observation from point 3. 
• Case 2: 1 contaminant from N(50,100) was added to replace 1 observation from point 3. 
• Case 3: 3 contaminants from N(0,100) were added to replace 3 observations from point 3. 
• Case 4: 3 contaminants from N(50,100) were added to replace 3 observations from point 3. 
• Case 5: 6 contaminants from N(0,100) were added to replace 6 observations from point 3. 
• Case 6: 6 contaminants from N(50,100) were added to replace 6 observations from point 3. 
• Case 7: 30 observasions from 3vt =  to replace all observations from point 3. 
• Case 8: 30 observasions from 1vt =  to replace all observations from point 3. 

5. In accordance with point 2 to 4, compute the value i i iy a bx e= + + , where we set 1a =  and 2b = .  
6. Estimate the parameter models with Huber M-estimation, Tukey’s bisquare estimation,  MM-

estimation and t distribution with degrees of freedom v  =1,3,5 dan v̂ (estimated degrees of 
freedom). 

7. Replicate the procedures 4 until 6 with the number of replicates is 1000. 
8. Calculate and compare the performance of the models, which are the Mean value of Absolute 

Biases and Mean Residual Standard Error (RSE) as the following: 

 ( ) ( )

1

1 ˆmean Absolute Bias 
R

r
j j j

rR
β β β

=

= −∑ , 1,2j =  (17) 

 ( )
1 2

2

1 1

1 1 ˆmean RSE
R n

i i
r i

y y
R n p= =

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ , (18) 

where 1,...,r R=  ( R =1000), 1,...,i n=  ( n =30) and p =2. 

Table 1 shows that the model with t distribution gives better results than the M-estimation. The 
mean value of absolute biases and mean residual standard error (RSE) of t distribution models 
(particularly with small degrees of freedom) is worth less than M-estimation. The interesting results 
can be obtained from the simulation. For the estimated degrees of freedom, v̂ , with the increasing 

6

ISS                                                                                                                                                        IOP Publishing
IOP Conf. Series: Earth and Environmental Science 58 (2017) 012013           doi:10.1088/1755-1315/58/1/012013



number of outliers, the model t distribution will respond with smaller value of v̂ . It occurs both in the 
case of an error with the contaminants that the variance increase (Case 1, 3 and 5) as well as by 
shifting the mean and variance increase (Case 2, 4 and 6). As for the case of error with student-t 
distribution (Case 7 and 8), the model t distribution with v  = 1 and v̂  = 0.965 still has the model 
performed better than the M-estimation. 

 
Table 1. Mean of absolute biases and mean of residual standard error of models 

Case Criterion Huber Tukey MM 1vt =  3vt =  5vt =  ˆv vt =  

Case 1 Bias a  0.540 0.526 0.498 0.080 0.392 0.474 0.145 
Bias b  0.004 0.004 0.003 0.005 0.002 0.003 0.003 
RSE 1.056 1.072 0.897 0.506 0.760 0.853 0.590 
v̂  1.267 

Case 2 Bias a  0.520 0.527 0.498 0.081 0.393 0.475 0.139 
Bias b  0.004 0.004 0.003 0.005 0.002 0.003 0.003 
RSE 1.042 1.072 0.898 0.506 0.760 0.854 0.584 
v̂  1.245 

Case 3 Bias a  0.562 0.540 0.529 0.156 0.464 0.536 0.184 
Bias b  0.005 0.004 0.004 0.004 0.003 0.004 0.006 
RSE 1.094 1.114 1.034 0.591 0.955 1.258 0.485 
v̂  0.708 

Case 4 Bias a  0.501 0.538 0.528 0.150 0.458 0.528 0.184 
Bias b  0.005 0.004 0.004 0.004 0.003 0.004 0.006 
RSE 1.086 1.113 1.033 0.590 0.955 1.262 0.476 
v̂  0.686 

Case 5 Bias a  0.604 0.543 0.546 0.302 0.532 1.397 0.336 
Bias b  0.007 0.004 0.005 0.004 0.004 0.023 0.008 
RSE 1.245 1.209 1.263 0.750 1.714 8.946 0.453 
v̂  0.486 

Case 6 Bias a  0.468 0.541 0.545 0.297 0.520 1.301 0.342 
Bias b  0.007 0.004 0.005 0.004 0.004 0.023 0.008 
RSE 1.301 1.209 1.264 0.750 1.732 10.078 0.444 
v̂  0.470 

Case 7 Bias a  0.371 0.374 0.370 0.391 0.360 0.364 0.365 
Bias b  0.006 0.006 0.006 0.007 0.006 0.006 0.006 
RSE 1.109 1.103 1.166 0.654 0.959 1.084 0.988 
v̂  3.539 

Case 8 Bias a  0.585 0.526 0.528 0.429 0.506 0.581 0.437 
 Bias b  0.010 0.009 0.009 0.008 0.008 0.010 0.008 
 RSE 1.570 1.518 1.699 0.954 1.772 2.357 0.959 
 v̂        0.964 

 

4.2. Simulation 2  
The target of simulation 2 is to demonstrate the Sensitivity Curve to assess the stability and robustness 
of estimators from the models. The Sensitivity Curve ( )n mSC y is a translated and rescaled version of 

the empirical influence function. In many situations, ( )n mSC y will converge to the influence function 
when n→∞ . The procedures for making Sensitivity Curve are: 
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1. Set X as simulation 1. 
2. Generate the error ( )~ 0,1ie N ,  1,...,30i = . 
3. Compute the value i i iy a bx e= + + , where we set 1a = , and 2b = . 
4. Consider the arbitrary value of my , m=1,2,...,1000  where we set my  as a sequence of 1000 

numbers with minimum 100 and maximum 300. 
5. Replace one observation of the sample by an arbitrary value my  and count the value of 

( ) ( ) ( )1 1 1 1 1,..., , ,..., ,n m n n m n n mSC y n T x x y T x x y− − −⎡ ⎤= −⎣ ⎦ , where ( )nT x  denotes the estimator of 
interest based on the sample x  of size n . 

6. Plot the value of ( )n mSC y  as the y -axis dan my  as the x -axis. 
Figure 1 shows that the t distribution model with v  = 1 looks more robust than the M-estimation. 

But with the increasingly large v  (i.e v  = 5), models of t distribution is no more robust than the M-
estimate models. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1. Sensitivity Curve for Intercept (a) and Slope (b) Parameter Estimates 
 

5. Application to real data 
In this paper we apply the models to the infant birth weight data in Indonesia at 2012. The infant birth 
weight data have been collected by the Indonesia Demographic and Health Survey (IDHS) which have 
been conducted regularly by Statistics Indonesia (BPS) [11] every five years. The sample size of data 
is 15124 infant which was born five years ago from the period of survey. The variables used in this 
study are the infant birth weight as dependent variable (Y) and the age of their mother as independent 
variable (X). 

Table 2 shows the model t distribution with v  = 1 has the smallest of standard error of estimates 
and residual standard error (RSE) value. The model t distribution with estimate of v  seems not more 
efficient compared to M-estimates, but has smaller RSE value than M-estimates. For the model t 
distribution with v  = 2, 3, 4, and 5 have smaller of both the standard error and RSE value than the M-
estimation. 

6. Discussion 
In general, the results of this study indicate that the model using t distribution with degrees of freedom 
v =1 (as named Caucy distribution) has a performance and robustness are better than the models of M-
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estimation. Almost equal to the research conducted by Lange et al. [1] which analyzed Stack-Loss 
data which the model t distribution with v  = 1 also showed better results than the M-estimation. 

The interesting thing from this article is the pattern of robustness shown by Sensitivity Curve 
where the model t distribution with v  = 1 looks more effective of robustness in estimate change of its 
fluctuations as compared to the model M-estimate. Moreover, with the decreasing of v , the 
performance and robustness of its models look better. 
 

Tabel 2. Regression of infant birth weight data: estimated from 10 models 

Model 
0β  1β  

RSE Mean Std. Error Mean Std. Error 
LS 3018.154 21.192 5.320 0.750 567.938 
Huber 3008.644 19.778 5.663 0.700 494.070 
Tukey 3010.980 19.800 5.664 0.700 497.531 
MM 3010.981 19.799 5.664 0.700 498.975 

1vt =  2981.949 16.286 6.016 0.576 308.620 
2vt =  3000.419 18.112 5.783 0.641 375.971 
3vt =  3005.356 18.845 5.712 0.667 412.357 
4vt =  3007.730 19.247 5.670 0.681 435.949 
5vt =  3009.202 19.507 5.639 0.690 452.734 

ˆ 6.004vt =  3010.226 19.917 5.614 0.706 465.411       
 

7. Conclusion 
This article shows the ability of models based on the t distribution to overcome outliers compared with 
M-estimates models. From the simulation and real data set application results we found that the best 
model fit to handle outliers is the models based on the t distribution with smallest degrees of freedom 
v . The t distribution model with small v  also gives the good performance in robustness of its 
estimator. 
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