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Abstract

The linear mixed models (LMMs) are widely used for data anal-
ysis to account fixed effects and random effects in Gaussian response
models. In LMMs, the random effects and the within-subject errors
have been assumed to be normally distributed but in practice, such
an assumption could easily be violated due to the presence of atypi-
cal data. Motivated by a concern of sensitivity to potential outliers or
data with longer-than-normal tails, many researchers have developed
robust LMMs using t distribution (abbreviated as tLMM). This paper
discussed the comparison between the LMMs and the tLMMs especially
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from perspectives of the fitness and robustness of the models. The ap-
plication of tLMM to household consumption per capita expenditure
data was also demonstrated in this paper. The results of this study
showed that the tLMMs provided better estimates than LMMs in term
of performance and robustness. Furthermore, it was also showed that
the best model to handle outliers was found to be the tLMM with the
smallest degrees of freedom.

Keywords: household consumption per capita expenditure, linear mixed
models, robustness, student-t distribution

1 Introduction

The linear mixed model (LMM), originally proposed by [7], has been widely
used for the data analysis. The popularity of such a model arises from its
implementation through commonly available software, e.g., SAS [13], proce-
dure MIXED, and R [12], library NLME. Comprehensive reviews that cover
methodological and computational aspects of the LMM are contained in many
books, among of them are written by [2] and [4].

In the framework of LMMs, the random effects and the within-subject
errors are assumed to the normal distribution. However, such an assumption
is not always satisfied because of the presence of atypical data. To remedy this
weakness, many robust methods have been developed to be less sensitive to
outliers. [19, 8, 6, 15, 16] investigated the use of the t distribution in place of
the normal for robust regression. The value of v (called the degrees of freedom),
which controls the thickness of the tails of the distribution, is directly related
to the degree of robustness, the smaller of v yields the higher of robustness
[16]. A robustness against outliers of t linear mixed model (tLMM) through
an application to orthodontic data and extensive simulations was proposed by
[11]. Further work in this direction is studied by [9, 10], and [14].

As well known, household income is an economic indicator that is often
used for measuring the prosperity and well-being. However, household income
is generally very difficult to be measured accurately, especially in developing
countries. Basically, household income and household expenditure are not
the same things. But such relationships between those two are very strong.
[1] stated that consumption expenditure is more reliable than income as an
indicator of a household permanent income because it does not vary as much
as income in the short term. For those reasons, household expenditure patterns
approach is then widely used to analyze the pattern of household income [5].

This paper presents a comparative study of robustness in tLMM on house-
hold expenditure data by employing many different degrees of freedom (v).
In Section 2, we describe a dataset for models application i.e household con-
sumption per capita expenditure in Jambi City in 2011. In Section 3, we define



A comparative study of robust t linear mixed models 59

notation and model formulation. The score vector and Fisher information ma-
trix are derived. In Section 5, we show the results of models application and
its simulation to demonstrate the robustness of tLMM with the household
consumption per capita expenditure data preliminarily analyzed in Section 2.
Finally, Section 6, we state some concluding remarks.

2 Data

Household consumption per capita expenditure (HCPE) data have been col-
lected by the National Socioeconomic Surveys (Susenas) which have been con-
ducted regularly by Statistics Indonesia (BPS). In this paper, we use the HCPE
data of Jambi City, Indonesia, in 2011 which have been collected quarterly in
a year. The sample size of data is 575 household which distributed almost the
same in each quarterly months. The dependent variable used in this study is
HCPE (Y). The several household attributes with fixed effects (X) and random
effect (Z) that are considered as having affected the household consumption
per capita expenditure are shown in Table 1.

Household expenditure distribution has a shape that closes to a right-
skewed distribution such as lognormal or loglogistic. In this study, we employ
the Boxcox transformation in order to obtain symmetrical histogram as shown
in Figure 1. The lambda of Boxcox transformation is λ = −0.5, so the data
transformation is Y ∗ = Y (−0,5).

Table 1: Variables used in Model Applications
Variables Description

Y Household consumption per capita expenditure
X1 Household size
X2 = 1, if the level of household head education

is not passed is not passed elementary school
= 0, if others

X3 = 1, if the level of household head education
is not passed junior high school

= 0, if others
X4 Percentage of household member who is working
X5 = 1, if the type of house floor is from tile

= 0, if others
X6 = 1, if the type of cooking fuel is from electricity or LPG

= 0, if others
Z1 Quarterly months (1,2,3,4)
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Figure 1: Histogram of (a) original data Y , and (b) transformed data Y ∗

3 Methods

Let yi = (yi1, . . . , yini
)T be dependent variable with i = 1, . . . , N and t =

1, . . . , ni. Consider ei the within error corresponding to yi. Let Xi be covariates
of ni× q1 design matrix for fixed effects, and let Zi be an ni× q2 design matrix
for random effects. Then the form of tLMM be [17]:

yi = Xiβ + Zibi + ei, (1)

with (
bi
ei

)
∼ t(q2+ni)

[(
0
0

)
,

(
D 0
0 R

)]
,

where β =
(
βT0 , β

T
1 , . . . , β

T
q1−1

)T
is the regression parameter for fixed effects,

and bi =
(
bT1 , . . . , b

T
q2

)T
is q2-vector of random effects. We assume that D is

q2 × q2 symmetric positive-definite matrix of unstructured covariance (σ2
b ) in

random effects, and Ri is ni × ni structured covariance matrix in error com-
ponents. We assume that the joint distributions of bi and ei are independent,
and we take vi = v for all i. For the within-subject error ei, we assume has
identically, independently and has distribution t(ni)(0, σ

2
eIi, v).

Under this consideration, the response variable of (1) is assumed has dis-
tribution

yi ∼ tni
(Xiβ,Λi, v), (2)

where

Λi = Λi(D) = ZiDZT
i + σ2

eIi
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are implicit functions depending on element of D and σ2
e . If v > 1, then Xiβ is

the mean of yi, and if v > 2, then v(v − 2)−1Λi is variance covariance matrix
of yi.

Let ∆i be the Mahalanobis distance between yi and Xiβ, then we have

∆i = ∆i(β,D) = εTi Λ−1
i εi

where εi = yi−Xiβ. Let θ =
(
βT ,αT

)T
be the vector of unknown parameters,

where α = (ωT , v)T with ω =
(
vech(D)T , vech(σ2

eIi
)T
. Given independent

observations Y1, . . . , YN , we can write the log-likelihood function of (2) as ` =∑N
i=1 li, where

li =log

(
Γ

(
v + ni

2

))
− log

(
Γ
(v

2

))
− ni

2
log(πv)− 1

2
log|Λi|

− v + ni
2

log

(
1 +

∆i

v

)
.

(3)

We can obtained the score vector sθ =
(
sTβ , s

T
α

)T
and the Fisher information

matrix Iθθ by computing the first and the second derivatives of (3). The score
vectors sθ are

sβ =
N∑
i=1

(v + ni)
XT
i Λ−1

i εi
v + ∆i

,

sσ2
e

= −
∑N

i=1

2σ2
e

+
1

2σ2
e

N∑
i=1

(v + ni)
∆i

v + ∆i

,

sv =
1

2

N∑
i=1

[
φ

(
v + ni

2

)
− φ

(v
2

)
− ni

2
− log

(
1 +

∆i

v

)
+
v + ni
v

∆i

v + ∆i

]
,

[sω]r = −1

2

N∑
i=1

[
tr
(
Λ−1
i Λ̇ir

)
− (v + ni)

(
εTi Λ−1

i Λ̇irΛ
−1
i εi

v + ∆i

)]
,

(4)

where

Λ̇ir =

(
∂Λi

∂ωr

)
, for r = 1, . . . , g; g =

(
q22 + q2 + 2

2

)
and φ(x) = d

dx
log (Γ(x)) denotes the digamma function.

The Fisher information, obtained by negative expectation of the second
derivative of (3), has the following forms:
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(5)

for r = 1, . . . , g, where ψ(x) = d2

dx2
log (Γ(x)) denotes the trigamma function.

To obtain the maximum likelihood (ML) estimates, we employ the Fisher
scoring algorithm. Under some regularity conditions, the asymptotic covari-
ance matrix estimates can be computed by substituting the ML estimates,
θ̂ = (β̂, α̂), into the inverse of the Fisher information matrix of (5). The
asymptotic covariance matrix of β̂ and α̂ can be formed as

var(β̂) = =̂−1
ββ = σ̂2

(
N∑
i=1

v + ni
v + ni + 2

XT
i Λ−1

i Xi

)−1

,

var(α̂) = =̂−1
αα.

The ML estimates of variance components are biased downward in finite
samples size. REML produces unbiased estimating equations for the variance
components and corrects for the loss of degrees-of-freedom incurred in estimat-
ing the fixed effects. As noted by [3], REML can be viewed as the Bayesian
principle of marginal inference by adopting the prior distribution π(β,α) ∝ 1
and Laplaces method as in [18]. Under this consideration, the t-REML likeli-
hood function can be approximated by LR(α) =

∫
L(β,α)dβ ≈ L∗

R(α), where

L∗
R(α) = (σ2πv)−n/2|

N∑
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XT
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Γ
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2

)
Γ
(
v
2

) ×|Λi|−1/2

(
1 +

∆i

v

)− v+ni
2

,
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where

Hi = (v + ni)

 Λ−1
i

v + ∆i

(
β̂(α),D

) − 2Λ−1
i ε̂i(α)ε̂Ti (α)Λ−1

i

v + ∆i

(
β̂(α),D

)2
 ,

with ε̂i(α) = yi − Xiβ̂(α), and β̂(α) is obtained by solving the following
equation:

N∑
i=1

(v + ni)

[
XT
i Λ−1

i (yi −Xiβ)

v + ∆i (β(α),D)

]
= 0. (6)

The approximately REML estimates of α, α̂R, can be obtained by imple-
menting the Newton-Raphson (NR) algorithm with ML estimates as the initial
values, and the empirical Bayes estimates of β, β̂(α̂R), must be computed at
each iteration by solving the equation (6) with α replaced by the current es-
timate α̂R.

4 Main Results

In this section, we show the results of LMM and tLMM with different degrees
of freedom v on the set of Household expenditure data pre-analyzed in Section
2. The tLMM with v = 1(t1LMM), v = 3(t3LMM), v = 5(t5LMM), and the
estimate of v, v̂(tv̂LMM) are compared. We model the household consumption
per capita expenditure as the linear function of X1, . . . , X6 as the fixed effects
and Z1 as the random effect. We set β = (β0, β1, . . . , β6)

T as the parameter
regressions for the fixed effects with the corresponding of design matrix Xi =
[1i : X1i : . . . : X6i].

Table 2 reports the estimate values of β with their standard errors in the
parentheses, the estimates of standard deviation of random effect and within
subject error. The tLMM performance is better than the LMM of which
the standard deviation within subject errors in tLMM are smaller than the
LMM. However, the tLMM with estimate degrees of freedom (v̂ = 13.066)
has the standard errors of parameter regressions for fixed effects that slight
bigger than the LMM, but the others of tLMM have smaller standard errors
of parameter regression than LMM. The tLMM with v = 1 has the smallest
standard deviation within subject errors and standard errors of parameter
regression for fixed effects.

Robustness

We use a simulation study to demonstrate the robustness of the tLMM. The
simple way to assess the robustness of the model is to make the Sensitiv-
ity Curve SCn(ym) as shown in Figure 2. In many situations, SCn(ym) will
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Table 2: Estimate results of LMM and tLMM
Parameter LMM t1LMM t3LMM t5LMM tv̂LMM

Fixed effects

β0 12.566 11.360 11.940 12.100 12.320
(0.0537) (0.0399) (0.0456) (0.0467) (0.0375)

β1 0.0737 0.0835 0.0783 0.0771 0.0754
(0.0080) (0.0066) (0.0076) (0.0077) (0.0120)

β2 0.1277 0.1967 0.1779 0.1700 0.1566
(0.0395) (0.0326) (0.0373) (0.0381) (0.0582)

β3 0.1378 0.1967 0.1742 0.1672 0.1571
(0.0273) (0.0225) (0.0257) (0.0263) (0.0400)

β4 -0.0024 -0.0018 -0.0022 -0.0023 -0.0024
(0.0005) (0.0004) (0.0005) (0.0005) (0.0077)

β5 -0.2047 -0.1890 -0.1975 -0.1999 -0.2053
(0.0261) (0.0215) (0.0246) (0.0251) (0.0385)

β6 -0.2001 -0.2012 -0.1908 -0.1897 -0.1889
(0.0265) (0.0216) (0.0247) (0.0252) (0.0387)

Random effect σb 0.0475 0.0180 0.0190 0.0187 0.0179
Within subject error σe 0.2822 0.1655 0.2186 0.2370 0.2607
Degrees of freedom v - 1 3 5 13.066

(0.444)

converge to the influence function when n → ∞. The procedures for making
Sensitivity Curve applied on household consumption per capita expenditure
data are:

1. Use the household consumption per capita expenditure data set pre-
analyzed in Section 2.

2. Consider the arbitrary value of ym, hence we set ym = seq(0.0001, 0.003,
length = 1000). Replace one observation of the rest response data, Y ∗

575,
by an arbitrary value ym and count the value of

SCn(ym) = n
(
Tn
(
x1, . . . , x(n−1), ym

)
− T(n−1)

(
x1, . . . , , x(n−1)

))
,

where Tn(x) denotes the estimator of interest based on the sample X of
size n.

3. Plot the value of SCn(ym) as the Y -axis and ym as the X-axis.

Figure 2 exhibits the curves of changes for the estimates of β applied on
Household expenditure data with plugging influence of outliers. The influence
on parameter estimation of the outliers is unbounded in the case of the LMM,
whereas it is obviously bounded in the tLMM. More specifically, outliers in the
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Figure 2: Sensitivity Curve for Parameter Estimates of β in LMM and tLMM.

tLMM with smallest degrees of freedom (v = 1) shows the smallest changes for
the estimates of β. Furthermore, the smaller of v gives the better for robust-
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ness of parameter estimates. This suggests that tLMM, which downweights
the influence of outliers and heavy-tailed noise, provides an appropriate way
for achieving robust inference applied on household consumption per capita
expenditure data.

5 Conclusion

This article shows the improvement in the performance of tLMM and their
stability to overcome outliers compared with LMM for modeling household
consumption per capita expenditure data. From the results of the analysis, we
find that the best model fit to handle outliers is the tLMM with the smallest
degrees of freedom (v).

The limitation of this article is the treatment of response variable which
transformed to Boxcox transformation in order to obtain the symmetrical type.
The next study is to develop the Generalized Linear Mixed Models (GLMM)
based on the distribution of household consumption per capita expenditure
data, such as the three parameters Log-normal distribution discussed in [5].
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