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summary

Indonesian labor force participation data are collected by Sakernas (National La-
bor Force Survey). The main purpose of Sakernas is to obtain information about
unemployment rate and its changes over time. The quarterly survey is designed
only for estimating the parameters at provincial level. Also, the official quarterly
unemployment rate is estimated based on only cross-sectional method despite the
fact that the data are collected under rotating panel survey. The research at hand
is aimed to estimate a quarterly unemployment rate at district level. There are
three related issues, namely 1) insufficient sample size, 2) complication of panel
rotation survey on parameter estimation, and 3) gaps in the parameter estima-
tion. Related to the situation, small area estimation (SAE) model can be used
to solve these issues. To solve these issues, two SAE models were proposed, in
which the strength of information was borrowed over time by using panel data
sets. The first model is a slightly modification of the Rao-Yu model suitable for
analysis at unit level and the second model is very close to the Rao-Yu model. An
emperical best linear unbiased predictor (EBLUP) based on the proposed model
has been obtained. Simulation study shows that the estimation of the proposed
model is better than the Rao-Yu model. The estimation of unemployment rate
based on the proposed model was not affected by the direct estimation.

Keywords and phrases: EBLUP, Rao-Yu model, rotating panel survey, Sakernas,
area unit level.
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1 Introduction

In many countries, including Indonesia, a rotating panel survey is used to collect data

on labor force participation. The distinguishing feature of this survey compared to the

conventional panel survey is that the respondents (or households) are divided into some



parts called rotation groups, where each group is a subsample of the overall sample. In each

periode one rotation group is introduced into the survey. Households in a rotation group are

interviewed during some periods, then they are dropped at certain periods and substituted

by households from a new rotation group. Each country has different rotation design.

In Indonesia, labor force participation data are collected by Sakernas (National

Labor Force Survey). Sakernas has been regularly conducted since 1976 by BPS-Statistics

Indonesia (Badan Pusat Statistik), but the rotating panel survey started from 2011. In the

framework of the rotation panel, the total sample of census blocks are separated into four

sample packages. Every package, at each census block is formed by 4 household groups.

In every quarter the total sample consists of four groups coming from different packages.

Sakernas rotation panel is designed on quarterly basis by maintaining 3/4 groups of the

previous quarter and adding 1/4 new groups of the current quarter. An illustration of the

Sakernas rotating panel design can be seen at Muchlisoh et al. [13] and for detail, see [1].

The main purpose of Sakernas is to obtain information about unemployment rate

and its changes over time. The quarterly survey is designed only for estimating the param-

eters at provincial level. Estimation of parameters for district level only conducted in 3rd

quarter in each year. It requires 3 times more than the number of samples for each quarter

which implies the requirement of additional cost and time. Also, the official quarterly un-

employment rate is estimated based on only cross-sectional method despite the fact that the

data are collected under rotating panel survey. The research at hand is aimed to estimate

a quarterly unemployment rate at district level.

There are three related issues, namely 1) insufficient sample size, 2) complication of

panel rotation survey on parameter estimation, and 3) gaps in the parameter estimation. To

solve these issues, it is necessary to study how to estimate parameter for district level based

on rotating panel survey when sample size is insufficient. Related to the situation, small

area estimation (SAE) model is an alternative that can be used to estimate the parameters

of an area when the sample size in the area is too small to obtain an adequate precision

which are estimated directly from survey [5]. One of SAE models for panel data is the

Rao-Yu model [3],[4], an extension of the basic Fay-Herriot model [12] by adding a random

area-time component which follows an autoregressive process order-1.

Some researchers have applied and modified the Rao-Yu model related to the con-

straints of autoregressive coefficient. You et al. [14] applied the Rao-Yu model to estimate

the monthly unemployment rate for census metropolitan areas and census agglomerations

in Canada using the Canadian Labour Force Survey. Esteban et al. [8] applied the Rao-Yu

model to estimate poverty rates for the Spanish provinces by gender. Fay and Diallo [10]

and Fay et al. [11] have modified the Rao-Yu model become a dynamic model. Diallo [9]

have generalized the model Rao-Yu. The modification of the Rao-Yu model is still based on

area level.

The Rao-Yu model did not specifically developed for panel rotation data, but

estimating the unemployment rate at districts level using Sakernas panel rotation data in

our previous study showed that the estimation based on the Rao-Yu model was better
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than direct estimation [13]. However, the basic area level model assumes that the sampling

variances are known. In practice, the sampling variances are seldom known and must be

replaced by an estimator [6]. Sakernas was designed based on three stages sampling design

and to estimate the variances of three-stage sampling is not simple.

Related to the issue of estimation of sampling variances and three issues described

at 4th paragraph, a SAE model was developed, in which the strength of information was

borrowed over time by using panel data sets, but not specifically developed for panel ro-

tation data. We closely followed the Rao-Yu model. In this article we proposed a slightly

modification of the Rao-Yu model suitable for analysis at unit level. A simulation study

was conducted and the quarterly unemployment rate at district level was also estimated.

The paper is structured as follows. Section 2 describes the Rao-Yu model and its

modification, section 3 describes the proposed model, section 4 describes our simulation

study, section 5 describes an application and section 6 describes conclusion.

2 The Rao-Yu Model and Its Modification

Let ȳit =
∑nit
j=1 yitj be a direct survey estimator of i -th small area mean at time point t,

say θit and ȳit is assumed unbiased estimator for θit. The θit’s are related to:

ȳit = θit + eit. (2.1)

The eit’s are sampling errors that normally distributed with zero mean and known block

diagonal covariance matrix Σ. A vector of auxiliary variables, xit related to θit is available

such that:

θit = x′itB + vi + uit, (2.2)

with i = 1, . . . ,M and t = 1, . . . , T . The x′it is a vector of q fixed auxiliary population

variables for i-th small area time t and the B is a vector of regression coefficients. Assumed

vi ∼ iidN(0, σ2
v) is a random effect for i-th small area and uit is a random effect for i-th

small area at time point t. The uit’s are assumed to follow a first order autoregressive

process within each area i. The Rao-Yu model is combining part of model (2.1) and (2.2):

ȳit = x′itB + vi + uit + eit,

uit = ρui,t−1 + εit, |ρ| < 1,
(2.3)

with εit ∼ iidN(0, σ2
ε). The vi, uit and eit are assumed mutually independent. The condition

|ρ| < 1 ensures stationarity of the series defined by (2.3) in order to obtain an autoregressive

process of order-1.

Fay and Diallo [10] and Fay et al.[11] have modified the Rao-Yu model by removing

the stationarity requirement and modifying the random effect terms. They call the model

as dynamic model. Unlike the Rao-Yu model, which assumes stationarity of the uit series,

the dynamic model does not assume stationarity, ρ is not constrained. The model is defined
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as follows

ȳit = x′itB + ρt−1v∗i + u∗it + eit,

u∗it = 1, for t = 1,

u∗it = ρu∗i,t−1 + εit, for t > 1,

(2.4)

where v∗i is a random effect for i-th small area at t = 1, v∗i ∼ iidN(0, σ2
v∗) and εit ∼

iidN(0, σ2
ε). When ρ > 1, the model corresponds to a divergent situation in which areas

become progressively more disparate. However, by dropping the stationarity assumption,

the dynamic model is more appropriate for a situation in which the disparity among area

dissipates over time. When σ2
v∗ =

σ2
ε

1−ρ2 and |ρ| < 1, the dynamic model becomes equivalent

to a Rao-Yu model with σ2
v = 0.

Diallo [9] obtained the general Rao-Yu model through dropping the stationarity

assumption by assuming finite series. The general Rao-Yu model has the same model as in

(2.3) but the time series part is defined as,

uit = ρui,t−1 + εit, for t ≥ 1 and ui0 = 0, (2.5)

with εit ∼ iidN(0, σ2
ε). The error eit, vi and εit are assumed to be independent of each

other.

3 The Proposed Models

We proposed 2 models, say them as Model-1 and Model-2. Model-1 is a slightly modification

of the Rao-Yu model suitable for analysis at the unit level. Let yitj be j-th sample unit of

i-th small area at time t and assume that unit specific auxiliary data xitj are available for

each population element j in i-th small area at time t. Model-1 is defined as,

yitj = x′itjB + vi + uit + eitj ,

uit = ρui,t−1 + εit, |ρ| < 1,
(3.1)

with, j = 1, 2, . . . , nit where nit is number of sample unit of i-th small area at time t. Assume

vi ∼ iidN(0, σ2
v) is a random effect for i-th small area and uit is a random effect for i-th small

area at time point t. The uit’s are assumed to follow a first order autoregressive process

within each area i, with εit ∼ iidN(0, σ2
ε). The error eitj are assumed eitj ∼ iidN(0, σ2

e)

and the vi, uit and eitj are mutually independent.

Model-2 is very close to the Rao-Yu model. Model-2 is defined the same as the

model in (2.3), but the element of diagonal of Σ is replaced by σ̂2
e/nit and the other element

replaced by 0. The σ̂2
e is an estimator of σ2

e that derived from Model-1.

Similar with the Rao-Yu model, Model-1 is a special case of the general linear

mixed model which cover many small area models. For each small area-i, the data (yitj)

can be arranged as yi = (y′i1, . . . , y
′
iT )′ with yit = (yit1, . . . , yitnit)

′, so that model (3.1) may

be written, in matrix form, as

yi = XiB + vi1ni + (blockdiag1≤t≤T (1nit))ui + ei, (3.2)
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where, Xi = (Xi1, . . . ,XiT )′,Xit = (xit1, . . . ,xitnit)
′,xitj = (1, x1itj , . . . , xqitj )

′. The ran-

dom effect vi is a scalar, ui = (ui1, . . . , uiT )′ and ei = (e′i1, . . . , e
′
iT )′ with eit = (eit1, . . . , eitnit)

′

and ni =
∑T
t=1 nit. The 1ni and 1nit are ni-vector of 1s and nit-vector of 1s, respectively.

For balanced data, ni1 = ni2 = . . . = niT , model (3.2) becomes:

yi = XiB + vi1ni + (IT ⊗ 1nit)ui + ei, (3.3)

with, IT is the identity matrix of order T and ⊗ is the kronecker product. Define Z1i = 1ni
and Z2i = (IT ⊗ 1nit), model (3.3) may be written as

yi = XiB +Z1ivi +Z2iui + ei. (3.4)

For all small area, model (3.1) becomes:

y = XB + (Im ⊗Z1i)v + (Im ⊗Z2i)u + e,

y = XB +Z1v +Z2u + e,
(3.5)

with y = (y′1, . . . ,y
′
m)′, X = (X′1, . . . ,X

′
m)′, v = (v′1, . . . , v

′
m)′, u = (u′1, . . . ,u

′
m)′, and

e = (e′1, . . . , e
′
m)′. The Im is the identity matrix of order m.

The stationarity assumption of serial uit in model (2.3) or (3.1) leads to

E(ui) = 0 and Cov(ui) = G2i = σ2
εΓ, (3.6)

where, Γ is a T × T symmetric matrix with (j, k)-th elements defined by ρ|j−k|

1−ρ2 , where

j = 1, . . . , T and k = 1, . . . , T . The independence assumption of vector ei = (e′i1, . . . , e
′
iT )′

leads to

E(ei) = 0 and Cov(ei) = Ri = σ2
eIni , (3.7)

The covariance matrix of model (3.1) have block diagonal form when arranged by area. For

each small area-i, the structure of covariance matrix is

Vi = Cov(Z1ivi) + Cov(Z2iui) + Cov(ei)

= σ2
vZ1iZ

′
1i + σ2

εZ2iΓZ
′
2i + σ2

eIni

= σ2
v1ni1

′
ni + σ2

ε(IT ⊗ 1nit)Γ(IT ⊗ 1nit)
′ + σ2

eIni

= σ2
vJni + σ2

ε(Γ⊗ Jnit) + σ2
eIni .

(3.8)

The Jni and Jnit are matrices of order ni × ni and nit × nit with elements 1, respectively.

For all area, the structure of covariance matrix is

V = blockdiag1≤i≤m(Vi)

and if n1 = n2 = . . . = nm, the structure of covariance matrix becomes

V = Im ⊗Vi

= Im ⊗
(
σ2
vJni + σ2

ε(Γ⊗ Jnit) + σ2
eIni

)
.

(3.9)
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Henderson [2] obtained the general form of BLUP (Best Linear Unbiased Prediction) of w

for the general linear mixed model,

y = XB +Zw + e (3.10)

is

w̃ = GZ′V−1(y−XB̃) (3.11)

with, V = R+ ZGZ′, Cov

w

e

 =

G 0

0 R

 and B̃ = [X′V−1X]−1[X′V−1y].

Model (3.5) may be written as the general linear mixed model (3.10), where Z =

(Z1,Z2) and w =

v

u

, with R = σ2
eIm ⊗ Ini and G =

σ2
vIm 0

0 Im ⊗ σ2
εΓ

, so that by

definition (3.11) the BLUP of

v

u

 is

ṽ

ũ

 =

σ2
vIm 0

0 Im ⊗ σ2
εΓ

 ((Im ⊗Z1i), (Im ⊗Z1i))
′
(Im ⊗Vi)

−1(y−XB̃).

The

ṽ

ũ

 can be partitioned into ṽ and ũ, then

ṽ = (σ2
vIm ⊗Z

′
1iV

−1
i )[(y′1, . . . ,y

′
m)′ − (X′1, . . . ,X

′
m)′B̃]

ũ = (Im ⊗ σ2
εΓZ

′
2iV

−1
i )[(y′1, . . . ,y

′
m)′ − (X′1, . . . ,X

′
m)′B̃],

so that,

ṽi = σ2
vZ
′
1iV

−1
i (yi −XiB̃)

= σ2
v1
′
ni [σ

2
vJni + σ2

ε(Γ⊗ Jnit) + σ2
eIni ]

−1(yi −XiB̃)
(3.12)

and

ũi = σ2
εΓZ

′
2iV

−1
i (yi −XiB̃)

= σ2
εΓZ

′
2i[σ

2
vJni + σ2

ε(Γ⊗ Jnit) + σ2
eIni ]

−1(yi −XiB̃).
(3.13)

The EBLUP of v and u are obtained by replacing the component of variance,

ρ, σ2
v , σ

2
ε and σ2

e with their estimators, say ρ̂, σ̂2
v , σ̂

2
ε and σ̂2

e , respectively. By REML esti-

mation, their estimators have not a close form. It’s not easy to derive estimates of their

parameters and also the estimation of parameters is subject to constrains, especially the

constraints of ρ. For the Rao-Yu model, the case of unknown ρ in the AR(1) model is more
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difficult to handle [5], as well as the proposed model. The stationarity assumption of serial

uit makes it difficult to estmate the parameter ρ when it is close to 1 [9]. We have done a

simulation study to estimate their four parameters simultaneously by REML using Fisher

Scoring iteration method, but we were not successfully obtained the estimator because the

information Fisher matrix was often singular. Therefore, in this paper we will only discuss

about parameter estimation when the parameter ρ is assumed to be known. Consequently,

the EBLUP of vi and ui are,

v̂i(ρ) = σ̂v
21′ni [σ̂

2
vJni + σ̂2

ε(Γ⊗ Jnit) + σ̂2
eIni ]

−1(yi −XiB̂), (3.14)

ûi(ρ) = σ̂2
εΓZ

′
2i[σ̂

2
vJni + σ̂2

ε(Γ⊗ Jnit) + σ̂2
eIni ]

−1(yi −XiB̂). (3.15)

Under REML estimation with ρ is known, the log likelihood function associated

with the model (3.5) is equal to

lnL(Ω) = −1

2
ln|V(Ω)| −

1

2
ln|X′V−1

(Ω)X| −
1

2
(y′Py), (3.16)

where P = V−1
(Ω) − V−1

(Ω)X(X′V−1
(Ω)X)−1(X′V−1

(Ω)) with Ω = (σ2
v , σ

2
ε , σ

2
e) and V(Ω) = V is

defined as (3.9). The estimator of Ω = (σ2
v , σ

2
ε , σ

2
e) is obtained iteratively using Fisher

Scoring method as follows

Ω(k+1) = Ω(k) + (F(Ω(k)))
−1 ∂lnL(Ω(k))

∂Ω
. (3.17)

The partial derivative of the log likelihood function to each parameter is

∂lnL(Ω)

∂Ωp
= −1

2
tr

(
P
∂V(Ω)

∂Ωp

)
+

1

2
y′P

∂V(Ω)

∂Ωp
Py, (3.18)

and the (p, p′)-th elemen of 3× 3 REML information matrix, F(Ω) is defined by

Fpp′ = −E
(
∂2lnL(Ω)

∂Ωp∂Ωp′

)
=

1

2
tr

(
P
∂V(Ω)

∂Ωp
P
∂V(Ω)

∂Ωp′

)
. (3.19)

At the convergence of iteration (3.17), the REML estimator of parameter Ω, Ω̂ = (σ̂2
v , σ̂

2
ε , σ̂

2
e)

will be obtained.

For a finite-population model, the i-th small area mean at time point t, θit is

θit =
1

Nit

∑
j∈s

yitj +
∑
j∈r

yitj


=
nit
Nit

(ȳsit) +

(
1− nit

Nit

)
(ȳrit)

= fit(ȳ
s
it) + (1− fit)(ȳrit),

(3.20)

where, Nit is the number of population unit of i-th small area at time t and fit = nit�Nit
is a sampling fraction. The upperscript “s” denoted the sampled units (observed units)
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and “r” denoted the non-sampled units (unobserved units). The first term of the equation

(3.20), ȳsit can be derived through a direct estimation from the sample. Follow Battese et al.

[7], the second term of the equation (3.20), ȳrit be predicted through the model prediction,

ȳrit =
1

Nit − nit

∑
j∈r

(x′itjB̃ + ṽi + ũit)


=

1

Nit − nit

Nit∑
j=1

x′itj −
nit∑
j=1

x′itj

 B̃ + (Nit − nit)(ṽi + ũit)


=

1

Nit − nit
[Nit(x̄

p
it)
′ − nit(x̄sit)′] B̃ + (ṽi + ũit)

(3.21)

with the result that BLUP for θit is

θ̃it = fit(ȳ
s
it) + (1− fit)

1

Nit − nit
[Nit(x̄

p
it)
′ − nit(x̄sit)′] B̃ + (ṽi + ũit)

= fit(ȳ
s
it) +

1

Nit
[Nit(x̄

p
it)
′ − nit(x̄sit)′] B̃ + (1− fit)(ṽi + ũit)

= fit(ȳ
s
it) + [(x̄pit)

′ − fit(x̄sit)′] B̃ + (1− fit)(ṽi + ũit)

(3.22)

and when the fit close to 0, the BLUP for θit becomes

θ̃it = (x̄pit)
′B̃ + (ṽi + ũit). (3.23)

The upperscript p denoted the population units.

The EBLUP of θit when ρ is known, θ̂it(ρ) is obtained by replacing B̃, ṽi and ũit
with B̂, v̂i(ρ) and ûit(ρ), respectively.

4 Simulation study

The simulation study starts from generating finite population that is assumed to follow

model (3.1), M = 26, T = 13 and j = 1, 2, . . . , Nit with Nit = 300. To study effect of ρ

and σ2
v , we used ρ = 0.2, ρ = 0.5, ρ = 0.9 and σ2

v = 2.5, σ2
v = 5, σ2

v = 10 while σ2
ε = 0.5

and σ2
e = 19.5. The parameter of the i-th small area mean at time point t defined by

θit = 1
Nit

∑Nit
j=1 yitj and the direct estimator for θit defined by yit = 1

nit

∑nit
j=1 yitj .

The estimation of θit will be performed by the proposed models and Rao-Yu model.

To study the efficiency and bias of estimation of the proposed models, we selected 4 sample

units (nit = 4) from each small area by simple random sampling. The sampling is done as

much as 100 replications (R = 100). From each simulated sample, the estimator of direct

estimation, proposed models and Rao-Yu model were computed. Simulated values of the

58



bias, MSE and CV of any estimator, say θ̂it, were computed as follows:

Bias =
1

MT

N∑
i=1

T∑
t=1

(
1

R

R∑
l=1

(θ̂itl − θit)

)
,

MSE =
1

MT

N∑
i=1

T∑
t=1

(
1

R

R∑
l=1

(θ̂itl − θit)2

)
,

CV =
1

MT

N∑
i=1

T∑
t=1


√

1
R

∑R
l=1(θ̂itl − θit)2

θ̂it

× 100.

The simulation results of 100 replications are shown in Table 1. From Table 1 we see that

the proposed model produces bias, MSE and CV smaller than Rao-Yu model. The bias of

Rao-Yu model getting smaller when the autoregressive coefficient is high. Otherwise the

bias of the proposed model is not affected by the value of autoregressive coefficient. The

MSE and CV of the proposed model and Rao-Yu model increases with increasing the value

of autoregressive coefficient and the value of variance of random area effect.

Table 1: Simulation results of 100 replications

Bias MSE CV

σ2
v

Estimation Method ρ 2.5 5 10 2.5 5 10 2.5 5 10

Model-1 0.2 0.012 0.012 0.012 0.839 0.875 0.885 10.199 10.556 13.617

Model-2 0.011 0.011 0.011 0.856 0.893 0.903 10.296 10.655 13.738

Rao-Yu Model 0.032 0.032 0.032 1.413 1.464 1.474 14.005 14.296 18.293

Direct 0.011 0.011 0.011 4.739 4.739 4.739 26.346 26.558 34.665

Model-1 0.5 0.012 0.012 0.012 0.901 0.937 0.947 10.724 11.051 14.231

Model-2 0.011 0.011 0.011 0.916 0.953 0.963 10.795 11.121 14.331

Rao-Yu Model 0.034 0.034 0.034 1.474 1.524 1.534 14.337 14.619 18.713

Direct 0.011 0.011 0.011 4.739 4.739 4.739 26.348 26.536 34.666

Model-1 0.9 0.011 0.011 0.011 1.021 1.024 1.034 13.191 14.759 12.612

Model-2 0.011 0.011 0.011 1.035 1.037 1.048 13.275 14.835 12.688

Rao-Yu Model 0.015 0.015 0.017 1.648 1.654 1.666 17.492 22.592 16.794

Direct 0.011 0.011 0.011 4.839 4.839 4.838 30.885 31.411 29.829
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5 Application

In a previous study we have applied the Rao-Yu model and the dynamic model to estimate

the quarterly unemployment rate for district level using West Java Sakernas panel rotation

data [13]. In the present study we applied the proposed Model-1 and Model-2 to estimate

the quarterly unemployment rate for district level using the same data.

The total sample for West Java province consists of 400 census blocks (or about

4000 households). The sample was allocated proportionally to 26 districts. The total sam-

ples for each district is contained of about 8-21 census blocks. The sample of census block

was only about 0.3 percent of 133,162. The total samples of census blocks are separated into

four sample packages (1,2,3,4). Every package, at each census block is formed by 4 house-

hold rotation groups. So that in every quarter the total samples consists of four rotation

groups coming from different packages. Each group in every census block consists of about

10 households. The total samples for each package contains of about 1-6 census blocks. We

used 13 quarters of Sakernas panel rotation data from 2011 to 2014. The rotation groups

are defined as a unit.

The proposed model assumes that unit specific auxiliary data are available for each

population element for all time of observation. In Indonesia, the assumptions are not easy

to be fulfilled. Consequently, in this study we use the same auxiliary data for all time. The

auxiliary data come from The 2011 Village Potential Sensus.

In the present study we assume that ρ is known. In practice, ρ is seldom known,

therefore in this application study ρ is estimated by Rao-Yu model. Hereinafter, the estima-

tor ρ̂ is applied to Model-1 and Model-2. Based on Rao-Yu model with covariance matrix Σ

is replaced by an estimator of sampling variance that derived from Taylor linearization, have

been obtained ρ̂ = 0.9. Table 2 shows the estimator of variance components when ρ = 0.9.

Figure 1 shows the comparison of estimation of quarterly unemployment rate at district

Table 2: Estimator of variance components

Model σ̂2
v σ̂2

ε σ̂2
e

Model-1 2.58 0.57 19.54

Model-2 0.83 0.56 -

Rao-Yu Model 0.05 0.82 -

level. Application studies which use the same autoregressive coefficients showed that the

unit level proposed model (Model-1) is better in describing the variation between areas than

area level models (Model-2 and Rao-Yu model). The estimation based on Rao-Yu model is

still influenced by the direct estimation. The estimation based on Model-1 and Model-2 has

similarities, but simulation studies showed that Model-1 is better than Model-2.
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Figure 1: Comparison of estimator by district: (a) District code: 3201-3213, (b) District
code: 3214-3279
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6 Conclusion

The proposed model have several advantages compared to Rao-Yu model. The proposed

model produces bias, MSE and CV smaller than Rao-Yu model, so that the estimation of the

proposed model is better. Rao-Yu model assumes that the sampling variances are known,

but in practice, the sampling variances are seldom to be known and must be replaced by an

estimator. If sampling design is complex, it is not easy to calculate the estimator. Using

the proposed model, no longer need to calculate the sampling variance because it is already

estimated at once along with other variance components.
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